首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal characteristics of three odonate species in a patchy habitat   总被引:1,自引:0,他引:1  
《Ecography》2003,26(1):13-20
Dispersal has a potentially profound effect on the dynamics of populations especially when a population occupies a patchy habitat. Ponds surrounded by terrestrial landscape are an example of patchy distribution of physical conditions and constitute "islands" for odonates. Few studies have focussed on dispersal in odonates. We have used the direct method of dispersal observing (capture-mark-recapture technique) in order to estimate the degree of linkage in three patchy populations of odonate localised on three ponds. We also examined the differences in dispersal ability within and among three species ( Coenagrion puella , Coenagrion scitulum and Libellula depressa ). The ponds were situated in southwest France on a limestone plateau. In this arid area, these ponds constitute the only surface water available and are relatively sparsely distributed. The size of the ponds ranged from 48 to 79 m2 and they were 200 and 775 m apart. We demonstrated that three factors influence the dispersal ability of these odonates. The first is represented by the abiotic factors and especially weather conditions. This determines the number of days that dispersal is possible. The second is interspecific differences. We showed that sensitivity to weather conditions, species size and species behaviour influence dispersal ability. The third factor is the intraspecific characteristics. We demonstrated that there are differences in dispersal ability according to sex and age. To conclude, we discuss the importance of pond management to maintain the existing odonate populations and to facilitate introduction of new populations in this region where little exchange occurs between ponds.  相似文献   

2.
In this study we assessed whether individuals of the damselfly species Ischnura elegans and Coenagrion puella that moved between ponds differed in their mean characteristics from individuals that did not move. Overall, the sex (female) and species ( C. puella ) that spent the most time away from the breeding site was more likely to move between ponds. Ischnura elegans males that dispersed had significantly longer forewings than males that did not, while male C. puella parasitised by water mites were more likely to disperse than unparasitised males. There was no evidence for differences in dispersal rates among the female colour forms of either I. elegans or C. puella . In general, the differences in dispersal characteristics between sexes and species could be explained by underlying variation in activity and mobility. The majority of dispersal between breeding sites by C. puella and I. elegans did not appear to be directed, but probably arose from chance movements occasionally taking individuals to a different pond from which they emerged.  相似文献   

3.
Size-biased dispersal prior to breeding in a damselfly   总被引:3,自引:0,他引:3  
Summary Dispersal is notoriously difficult to measure, so its potential population consequences are often unknown. If dispersal is density-dependent, it can act in population regulation. Adult damselflies Enallagma boreale (Zygoptera: Coenagrionidae) raised as larvae under a range of competitive regimes were individually measured and marked. Individuals that survived to reproductive maturity were either recovered at the natal pond or had dispersed to nearby water bodies. Dispersing individuals were heavier at emergence than those returning to the natal pond to breed. Therefore, an increased probability of dispersal does not appear to be a response to poor conditions in this species.  相似文献   

4.
Christopher C. Caudill 《Oikos》2003,101(3):624-630
Dispersal affects a wide array of ecological and evolutionary processes, but has been difficult to estimate empirically. A 15Nitrogen stable isotope enrichment technique was used to passively mark all developing Callibaetis ferrugineus hageni (Eaton) mayfly larvae in a beaver pond that had previously been shown to be a patch in a source-sink metapopulation. After enrichment during the larval stages, dispersal among ponds by adult females was demonstrated by the presence of unmarked females ovipositing in the labeled pond, and marked females in an unlabeled pond. Observed frequencies of marked females suggested incomplete mixing between ponds. In contrast, males rarely dispersed from their natal pond, which was consistent with the unusual mating system in this species – adult Callibaetis are short-lived, do not feed, and females are sexually receptive immediately after emerging from the larval habitat. The frequent dispersal demonstrated using the stable isotope technique was a critical component of the source-sink dynamic observed in this metapopulation, and further use of this technique will provide insights into patterns of dispersal in spatially structured habitats.  相似文献   

5.
Dispersers often differ in body condition from non-dispersers. The social dominance hypothesis explains dispersal of weak individuals, but it is not yet well understood why strong individuals, which could easily retain their natal site, are sometimes exposed to risky dispersal. Based on the model for dispersal under kin competition by Hamilton and May, we construct a model where dispersal propensity depends on body condition. We consider an annual species that inhabits a patchy environment with varying patch qualities. Offspring body condition corresponds to the quality of the natal patch and competitive ability increases with body condition. Our main general result balances the fitness benefit from not dispersing and retaining the natal patch and the benefit from dispersing and establishing somewhere else. We present four different examples for competition, which all hint that dispersal of strong individuals may be a common outcome under the assumptions of the present model. In three of the examples, the evolutionarily stable dispersal probability is an increasing function of body condition. However, we found an example where, counterintuitively, the evolutionarily stable dispersal probability is a non-monotone function of body condition such that both very weak and very strong individuals disperse with high probability but individuals of intermediate body condition do not disperse at all.  相似文献   

6.
Source–sink theory is an ecological framework that describes how site and habitat-specific demographic rates and patch connectivity can explain population structure and persistence across heterogeneous landscapes. Although commonly used in conservation planning, source–sink theory has rarely been applied to the management of invasive species. This study tested whether the common carp, one of the world’s most invasive species, exhibits source–sink dynamics in a representative watershed in the Upper Mississippi River Basin comprised of a dozen interconnected ponds and lakes. To test for source–sink population structure, we used standard fish sampling techniques, tagging, and genetic assignment methods to describe habitat-specific recruitment rates and dispersal. Five years of sampling revealed that while adult carp were found across the entire watershed, reproductive success (the presence of young carp) was restricted to shallow ponds. Additionally, nearly a third of the carp tagged in a representative pond dispersed into the connected deeper lakes, suggesting that ponds in this system serve as sources and lakes as sinks. This possibility was confirmed by microsatellite analysis of carp tissue samples (n = 1041) which revealed the presence of two distinct strains of carp cohabitating in the lakes, whose natal origins could be traced back to one of two pond systems, with many adult carp attempting to migrate back into these natal ponds to spawn. We conclude that the distribution and persistence of invasive carp in complex interconnected systems may often be driven by source–sink dynamics and that their populations could be controlled by suppressing reproduction in source habitats or by disrupting dispersal pathways, instead of culling individuals from sink habitats.  相似文献   

7.
We analyzed more than 1,600 dispersal events from two populations of a North American cooperatively breeding woodpecker species to determine what factors influence natal dispersal distance and whether distance traveled affects reproduction later in life. We found significant heritability of natal dispersal distance, in both males and females, indicating substantial additive genetic variance for this behavioral trait. Natal dispersal distance additionally was affected by social and ecological factors: individuals dispersing in their first year of life moved longer distances than those staying on their natal site as helpers for a prolonged time prior to dispersal, and increasing territory isolation led to longer dispersal distances. Successful dispersers incurred fitness costs, with lifetime fledgling production (in both sexes) and lifetime production of recruits to the breeding population (in females only) decreasing with increasing natal dispersal distance. We conclude that natal dispersal distance has a genetic basis but is modulated by environmental and social factors and that natal dispersal distance in this species is (currently) under selection.  相似文献   

8.
Kevin R. Hopper 《Oikos》2001,93(3):470-476
Two of the main predators of dragonfly larvae, insectivorous fish in communities with fish and large dragonfly species in communities without fish, differ markedly in their mode of predation. In general, dragonfly species coexist successfully with one predator or the other, but larvae of the dragonfly Pachydiplax longipennis can coexist successfully with both. I examined the behavioral response of these larvae to a simulated predator attack to determine whether their response (1) differs between the two communities, and (2) is sensitive to waterborne cues about the type of predator present. I compared larvae from two different communities: fish ponds where insectivorous fish were the top predators, and fish-free ponds where large dragonflies were the top predators. Larvae from fish-free ponds actively moved away from an attack significantly more than did larvae from fish ponds, provided each was attacked in its native pond water. Larvae collected from a fish-free pond but then attacked in fish water moved less than did controls (larvae attacked in fish-free water). Likewise, larvae collected from a fish pond but attacked in fish-free water moved more than did controls (larvae attacked in fish water). Larvae attacked first in water from their native pond and then in water from the contrasting pond changed their response in the expected direction. These results indicate that escape behavior in P. longipennis differs between communities with different predator types and is sensitive to waterborne cues in a manner consistent with the mode of predation employed by each predator.  相似文献   

9.
10.
Although relatedness between mates is of considerable evolutionary and ecological significance, the way in which the level of relatedness is determined by different behavioural processes remains largely unknown. We investigated the role of behaviour in predicting mate relatedness in great tits using genotypic markers and detailed observations. We studied how mate relatedness is influenced by natal dispersal, inbreeding/outbreeding avoidance after natal dispersal and a behaviour not previously considered that influences membership to social aggregations, namely family escorting behaviour by parents. Among locally born individuals, the level of mate relatedness decreased with natal dispersal distance for females, but not for males. In contrast, mate relatedness was negatively related to the extent of family movements for males, but not for females. However, family movements did not predict dispersal distance for either sex. Local recruits were more related to their mates than immigrants, but this was only significant for females. No evidence was found for inbreeding/outbreeding avoidance after dispersal. Our results suggest that, in highly mobile species, mating options are spatially and/or socially limited, and that parents influence mating options of their offspring before dispersal.  相似文献   

11.
Patch isolation resulting from habitat loss and fragmentation generally has detrimental effects on associated species. Peatlands may be especially sensitive to such effects because peat mining results in drastic changes in the hydrology of natural remnants. This study aimed to assess the efficiency of conservation zones surrounding ponds in mined bogs for two taxa: songbirds and odonates. We compared songbird distribution and odonate assemblages between ponds isolated by peat mining (n=6–12) and control ponds (n=11–13) located in natural bogs. Birds did not show major responses to pond isolation, whether in terms of their relative abundance or reproductive activity. However, longer‐term data would be required to confirm this trend. In contrast, odonate abundance, as estimated from exuviae, was higher in natural ponds than in isolated ones. Some taxa, especially bog specialists, were more sensitive than others. Hence, pond isolation by peat mining significantly altered the structure of odonate assemblages. Pond size also influenced odonate abundances and distribution. Effective conservation of bog ponds should account not only for variations in the response of different taxa, but also for pond structural diversity, which influence species response to isolation.  相似文献   

12.
Animals exhibit diverse dispersal strategies, including sex‐biased dispersal, a phenomenon common in vertebrates. Dispersal influences the genetic structure of populations as well as geographic variation in phenotypic traits. Patterns of spatial genetic structure and geographic variation may vary between the sexes whenever males and females exhibit different dispersal behaviors. Here, we examine dispersal, spatial genetic structure, and spatial acoustic structure in Rufous‐and‐white Wrens, a year‐round resident tropical bird. Both sexes sing in this species, allowing us to compare acoustic variation between males and females and examine the relationship between dispersal and song sharing for both sexes. Using a long‐term dataset collected over an 11‐year period, we used banding data and molecular genetic analyses to quantify natal and breeding dispersal distance in Rufous‐and‐white Wrens. We quantified song sharing and examined whether sharing varied with dispersal distance, for both males and females. Observational data and molecular genetic analyses indicate that dispersal is female‐biased. Females dispersed farther from natal territories than males, and more often between breeding territories than males. Furthermore, females showed no significant spatial genetic structure, consistent with expectations, whereas males showed significant spatial genetic structure. Overall, natal dispersal appears to have more influence than breeding dispersal on spatial genetic structure and spatial acoustic structure, given that the majority of breeding dispersal events resulted in individuals moving only short distances. Song sharing between pairs of same‐sex animals decreases with the distance between their territories for both males and females, although males exhibited significantly greater song sharing than females. Lastly, we measured the relationship between natal dispersal distance and song sharing. We found that sons shared fewer songs with their fathers the farther they dispersed from their natal territories, but that song sharing between daughters and mothers was not significantly correlated with natal dispersal distance. Our results reveal cultural differences between the sexes, suggesting a relationship between culture and sex‐biased dispersal.  相似文献   

13.
Landscape structure can affect dispersal and gene flow in a species. In urban areas, buildings, roads, and small habitat patches make the landscape highly fragmented and can inhibit movement and affect dispersal behavior. Similarly, in rural forested areas, large open areas, such as fields, may act as barriers to movement. We studied how landscape structure affects natal dispersal distances of Eurasian red squirrels (Sciurus vulgaris) in an urban area and a rural area in Finland, by monitoring juvenile red squirrels with radio telemetry. We observed extremely long dispersal distances—up to 16 km—in the rural study area, but shorter distances—on average only half a kilometer—in the urban study area. The landscape structure affected the eventual dispersal paths; in the rural landscape, dispersers favored spruce dominated areas and avoided fields along their dispersal route, although they occasionally even crossed wide fields. In the urban landscape, squirrels preferred areas with deciduous or coniferous trees. The movement steps made by dispersers were longer in the more hostile landscape compared to forested areas. Despite these effects on movement path, the landscape structure only had a minor effect on straight line dispersal distances moved from the natal nest. In other words, individuals moved longer distances and were likely to circumvent barriers in their path, but this did not affect how far they settled from their natal home. This result indicates that, although landscape structure has obvious effects on movement, it still may have only a small effect on other aspects of the population, for example, gene flow.  相似文献   

14.
Odonate populations and species numbers are declining globally. Successful conservation requires sound assessments of both odonate distributions and habitat requirements. Odonates have aquatic (larval) and terrestrial (adult) stages, but most surveys that are used to inform conservation managers are undertaken of the adult stage. This study investigates whether this bias towards adult records in odonate recording is misinterpreting the environmental quality of sites. The habitat focus is farmland ponds, a key feature of agricultural landscapes. We tested whether or not, adult, larval and exuvial surveys lead to similar conclusions on species richness and hence on pond quality. Results showed that pond surveys based upon larvae and exuviae are equally suitable for the reliable assessment of presence/absence of odonates, but that adult surveys are not interchangeable with surveys of larvae/exuviae. Larvae were also found at ponds with no emerging individuals due to changes in habitat quality, therefore presence of exuviae remains the only proof of life-cycle completion at a site. Ovipositing females were recorded at all ponds where exuviae were totally absent hence adult surveys over-estimate pond quality and low-quality ponds are functioning as ecological traps. Highly mobile and generalist species were recorded at more locations than other species. Adult surveys also bias recording towards genera, species and populations with non-territorial mate-location strategies. Odonate biodiversity monitoring would benefit from applying the best survey method (exuviae) to avoid wasting valuable financial resources while providing unbiased data, necessary to achieve conservation objectives.  相似文献   

15.
Dispersal is considered to be a species‐specific trait, but intraspecific variation can be high. However, when and how this complex trait starts to differentiate during the divergence of species/lineages is unknown. Here, we studied the differentiation of movement behaviour in a large salamander population (Salamandra salamandra), in which individual adaptations to different habitat conditions drive the genetic divergence of this population into two subpopulations. In this system, salamanders have adapted to the deposition and development of their larvae in ephemeral ponds vs. small first‐order streams. In general, the pond habitat is characterized as a spatially and temporally highly unpredictable habitat, while streams provide more stable and predictable conditions for the development of larvae. We analysed the fine‐scale genetic distribution of larvae, and explored whether the adaptation to different larval habitat conditions has in turn also affected dispersal strategies and home range size of adult salamanders. Based on the genetic assignment of adult individuals to their respective larval habitat type, we show that pond‐adapted salamanders occupied larger home ranges, displayed long‐distance dispersal and had a higher variability of movement types than the stream‐adapted individuals. We argue that the differentiation of phenotypically plastic traits such as dispersal and movement characteristics can be a crucial component in the course of adaptation to new habitat conditions, thereby promoting the genetic divergence of populations.  相似文献   

16.
Dispersal (i.e. movement from a natal or breeding site to another breeding site) is a central process in ecology and evolution as it affects the eco‐evolutionary dynamics of spatially structured populations. Dispersal evolution is regulated by the balance between costs and benefits, which is influenced by the individual phenotype (i.e. phenotype‐dependent dispersal) and environmental factors (i.e. condition‐dependent dispersal). Even though these processes have been extensively studied in species with simple life cycles, our knowledge about these mechanisms in organisms displaying complex life cycles remains fragmentary. In fact, little is specifically known about how the interplay between individual and environmental factors may lead to alternative dispersal strategies that, in turn, lead to the coexistence of contrasted site fidelity phenotypes. In this paper, we examined breeding dispersal in a pond‐breeding amphibian, the great crested newt Triturus cristatus, within usual walking distances for a newt. We took advantage of recent developments in multi‐event capture–recapture models and used capture–recapture data (946 newts marked) collected in a spatially structured population occupying a large pond network (73 ponds). We showed a high rate of breeding site infidelity (i.e. pond use) and the coexistence of two dispersal phenotypes, namely, a highly pond faithful phenotype and a dispersing phenotype. Individuals that were site faithful at time t – 1 were therefore more likely to remain site faithful at time t. Our results also demonstrated that the probability that individuals belong to one or the other dispersal phenotypes depended on environmental and individual factors. In particular, we highlighted the existence of a dispersal syndrome implying a covariation pattern among dispersal behavior, body size, and survival. Our work opens new research prospects in the evolution of dispersal in organisms displaying complex life cycles and raises interesting questions about the evolutionary pathways that contribute to the diversification of movement strategies in the wild.  相似文献   

17.
In a wild population of banner-tailed kangaroo rats, heritability of dispersal was estimated using two measures of dispersal tendency: distance moved from the natal site and likelihood of leaving the natal home range. Neither of the heritability measures was significantly different from 0. The results indicate that the main causes of variation in dispersal behaviour in this species are environmental, and suggest that there is no class of ‘innate’ dispersers. The possibility cannot be excluded that this population retains modest additive genetic variance for dispersal tendency. The survival consequences of dispersal in kangaroo rats are known to depend on population density and to change significantly between years, so that selection should maintain genetic variation in dispersal tendencies. Modest genetic variation for dispersal tendencies, especially if dispersal is a conditional trait, will be extremely difficult to detect in field studies.  相似文献   

18.
Genetic consequences of natal dispersal in the colonial lesser kestrel   总被引:1,自引:1,他引:0  
Dispersal is a life-history trait that plays a fundamental role in population dynamics, influencing evolution, species distribution, and the genetics and structure of populations. In spite of the fact that dispersal has been hypothesized to be an efficient behavioural mechanism to avoid inbreeding, the expected relationship between dispersal and mate relatedness still remains controversial. Here, we examine the genetic consequences of natal dispersal, namely the higher chance of obtaining genetically less similar mates as a result of moving from natal to breeding sites, in a lesser kestrel (Falco naumanni) population. Relatedness between individuals tended to decrease with distance between their breeding colonies, indicating that the study population follows an 'isolation-by-distance' pattern of spatial genetic structure. Such a fine-scale genetic structure generates a scenario in which individuals can potentially increase the chance of obtaining genetically less similar mates by dispersing over larger distances from their natal colony. Using dispersal information and genotypic data, we showed that mate relatedness decreased with natal dispersal distance, an effect that remained significant both while including and excluding philopatric individuals from the data set. These results, together with the well known detrimental consequences of reduced genetic diversity in the study population, suggest that dispersal may have evolved, at least in part, to avoid the negative fitness consequences of mating with genetically similar individuals.  相似文献   

19.
We surveyed freshwater ponds (localities) nested within watersheds (regions) to evaluate the relationship between productivity and animal species richness at different spatial scales. In watersheds where the ponds were relatively distant from one another (likely reducing the level of interpond dispersal of many organisms), we found a scale‐dependent productivity–diversity relationship; at local scales (among ponds), diversity was a hump‐shaped function of productivity, whereas at regional scales (among watersheds), diversity monotonically increased with productivity. Furthermore, this relationship emerged because there was a strong relationship between productivity and pond‐to‐pond species compositional differences. Alternatively, in watersheds where ponds were relatively close together (likely leading to higher rates of dispersal of many organisms), we found no scale‐dependence; diversity was a hump‐shaped function of productivity at both local and regional scales. Here, the relationship between species compositional dissimilarity and productivity was much weaker. We conclude that whether or not scale‐dependence is observed in productivity–diversity relationships will depend, at least in part, on the degree of connectivity among localities within regions.  相似文献   

20.
1. Behavioural differences among prey species may result from evolutionary adaptations that facilitate coexistence with different predators and influence vulnerability to predators. It has been hypothesised that prey species modify their behaviour in relation to the risk posed by particular predators. 2. We examined the relationship between anti‐predator behaviour and predation risk in five species of larval odonates in combination with three predatory fish species (perch, gudgeon and rudd) that differ in foraging behaviour. The odonates, Platycnemis pennipes, Coenagrion puella, Lestes sponsa, Sympetrum striolatum and Libellula depressa, differ with regard to their life cycle and habitat, including water depth, occurrence in temporary ponds and co‐existence with fish. 3. The odonate species differed in their response to fish: (i) Two species showed a flexible response. Larval C. puella reduced activity in the presence of fish, regardless of species, whereas L. depressa altered their activity only in the presence of gudgeon. (ii) Independent of fish species, all odonates except L. depressa exhibited spatial avoidance of fish. This was interpreted as a more general anti‐predator response. (iii) In some cases the odonates showed no response to predators and their behaviour was thus independent of predation risk. 4. Our results confirm that all odonates responded to the presence of at least some predatory fish, and that some odonate species discriminated between fish species. However, we found no significant correlation between behavioural modifications and predation risk, indicating that anti‐predator responses and predation risk depend on the particular predator and the species being preyed on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号