首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterologous gene expression in Bacteroides fragilis.   总被引:5,自引:0,他引:5  
C J Smith  M B Rogers  M L McKee 《Plasmid》1992,27(2):141-154
Bacteroides fragilis and other gastrointestinal tract Bacteroides are unusual gram-negative eubacteria in that genes from other gram-negative eubacteria are not expressed when introduced into these organisms. To analyze gene expression in Bacteroides, expression vector and promoter probe (detection) vector systems were developed. The essential feature of the expression vector was the incorporation of a Bacteroides insertion sequence element, IS4351, which possesses promoter activity directed outward from its ends. Genes inserted into the multiple cloning site downstream from an IS4351 DNA fragment were readily expressed in B. fragilis. The chloramphenicol acetyltransferase (cat) structural gene from Tn9 was tested and conferred chloramphenicol resistance on B. fragilis. Both chloramphenicol resistance and CAT activity were shown to be dependent on the IS4351 promoters. Similar results were obtained with the Escherichia coli beta-glucuronidase gene (uidA) but activity was just 30% of the levels seen with cat. Two tetracycline resistance determinants, tetM from Streptococcus agalactiae and tetC from E. coli, also were examined. tetC did not result in detectable tetracycline resistance but the gram-positive tetM gene conferred high-level resistance to tetracycline and minocycline in Bacteroides hosts. Based on the cat results, promoter probe vectors containing the promoterless cat gene were constructed. These vectors were used to clone random B. fragilis promoters from partial genomic libraries and the recombinants displayed a range of CAT activities and chloramphenicol MICs in B. fragilis hosts. In addition, known E. coli promoters (Ptet, Ptac, Ptrc, Psyn, and P1P2rrnB) were tested for activity in B. fragilis. No chloramphenicol resistance or CAT activity was observed in B. fragilis with these promoters.  相似文献   

2.
The functionally important 3' domain of the ribosomal 16S RNA was altered by in vitro DNA manipulations of a plasmid-encoded 16S RNA gene. By in vitro DNA manipulations two double mutants were constructed in which C1399 was converted to A and G1401 was changed to either U or C and a single point mutant was made wherein G1416 was changed to U. Only one of the mutated rRNA genes could be cloned in a plasmid under the control of the natural rrnB promoters (U1416) whereas all three mutations were cloned in a plasmid under the control of the lambda PL promoter. In a strain coding for the temperature-sensitive lambda repressor cI857 the mutant RNAs could be expressed conditionally. We could show that all three mutant rRNAs were efficiently incorporated into 30S ribosomes. However, all three mutants inhibited the formation of stable 70S particles to various degrees. The amounts of mutated rRNAs were quantified by primer extension analysis which enabled us to assess the proportion of the mutated ribosomes which are actively engaged in in vivo protein biosynthesis. While ribosomes carrying the U1416 mutation in the 16S RNA were active in vivo a strong selection against ribosomes with the A1399/U1401 mutation in the 16S RNA from the polysome fraction is apparent. Ribosomes with 16S RNA bearing the A1399/C1401 mutation did not show a measurable protein biosynthesis activity in vivo. The growth rate of cells harbouring the different mutations reflected the in vivo translation capacities of the mutant ribosomes. The results underline the importance of the highly conserved nucleotides in the 3' domain of the 16S RNA for ribosomal function.  相似文献   

3.
4.
5.
6.
7.
8.
The nucleotide sequence of the promoter region for the rrnB gene of E. coli had been determined by the Maxam-Gilbert technique. The 700 bp long sequence had been compared with the published sequences of four other rRNA promoter regions. The rrnB sequence was found to be homologous with the rrnA promoter sequence till the 370th base upstream from the coding region of mature 16S rRNA. The significance of this homology is discussed and a tentative model is proposed to account for the unusual properties of the rRNA promoters.  相似文献   

9.
10.
The seven rRNA operons in Escherichia coli each contain two promoters, rrn P1 and rrn P2. Most previous studies have focused on the rrn P1 promoters. Here we report a systematic analysis of the activity and regulation of the rrnB P2 promoter in order to define the intrinsic properties of rrn P2 promoters and to understand better their contributions to rRNA synthesis when they are in their natural setting downstream of rrn P1 promoters. In contrast to the conclusions reached in some previous studies, we find that rrnB P2 is regulated: it displays clear responses to amino acid availability (stringent control), rRNA gene dose (feedback control), and changes in growth rate (growth rate-dependent control). Stringent control of rrnB P2 requires the alarmone ppGpp, but growth rate-dependent control of rrnB P2 does not require ppGpp. The rrnB P2 core promoter sequence (-37 to +7) is sufficient to serve as the target for growth rate-dependent regulation.  相似文献   

11.
rRNA promoters from the rrnB locus of Bacillus subtilis and from the rrnB locus of Escherichia coli were fused to the gene for chloramphenicol acetyltransferase (CAT). The level of expression of CAT in E. coli showed growth rate dependence when the CAT gene was linked to either E. coli or B. subtilis tandem promoters. The downstream promoter of the tandem Bacillus pair showed growth rate regulation, while the upstream promoter did not, whereas for the E. coli tandem promoters, only the upstream promoter was growth rate regulated.  相似文献   

12.
13.
14.
15.
16.
17.
The effects of P/P- and P/E-site tRNA(Phe) binding on the 16S rRNA structure in the Escherichia coli 70S ribosome were investigated using UV cross-linking. The identity and frequency of 16S rRNA intramolecular cross-links were determined in the presence of deacyl-tRNA(Phe) or N-acetyl-Phe-tRNA(Phe) using poly(U) or an mRNA analogue containing a single Phe codon. For N-acetyl-Phe-tRNA(Phe) with either poly(U) or the mRNA analogue, the frequency of an intramolecular cross-link C967 x C1400 in the 16S rRNA was decreased in proportion to the binding stoichiometry of the tRNA. A proportional effect was true also for deacyl-tRNA(Phe) with poly(U), but the decrease in the C967 x C1400 frequency was less than the tRNA binding stoichiometry with the mRNA analogue. The inhibition of the C967 x C1400 cross-link was similar in buffers with, or without, polyamines. The exclusive participation of C967 with C1400 in the cross-link was confirmed by RNA sequencing. One intermolecular cross-link, 16S rRNA (C1400) to tRNA(Phe)(U33), was made with either poly(U) or the mRNA analogue. These results indicate a limited structural change in the small subunit around C967 and C1400 during tRNA P-site binding sensitive to the type of mRNA that is used. The absence of the C967 x C1400 cross-link in 70S ribosome complexes with tRNA is consistent with the 30S and 70S crystal structures, which contain tRNA or tRNA analogues; the occurrence of the cross-link indicates an alternative arrangement in this region in empty ribosomes.  相似文献   

18.
A region upstream from the Escherichia coli rrnB P1 promoter, the upstream activator region (UAR), increases the activity of the promoter in vivo and the rate of association with RNA polymerase (E sigma 70) in vitro in the presence of the two initiating nucleotides. We have used four types of chemical and enzymatic footprinting probes to determine whether rrnB P1-E sigma 70 complexes formed in the presence of the initiating nucleotides (RPinit) differ from typical open complexes (RPo) formed in the absence of the initiating nucleotides and to examine the structural differences between rrnB P1 complexes containing the UAR and those lacking the UAR. We find that the rrnB P1-RPinit complex closely resembles open complexes formed at other E sigma 70 promoters, indicating that the formation of the first phosphodiester bond does not result in a major rearrangement of the promoter-RNA polymerase complex. An unusual potassium permanganate modification at position -18 in both RPo and RPinit indicates the possible presence of a subtle difference in the -10, -35 spacer structure compared to some other E. coli promoters. We show that the E sigma 70-rrnB P1 complex formed with the promoter containing the UAR has DNase I and hydroxyl radical cleavage patterns in the -50 region different from those observed with the same promoter lacking the UAR. These results are interpreted to indicate that E sigma 70 may interact with a region further upstream from that contacted by RNA polymerase bound at most other promoters and/or that unusual structural properties of this region are induced by bound E sigma 70.  相似文献   

19.
Twelve specific alterations have been introduced into the binding site for ribosomal protein S8 in Escherichia coli 16S rRNA. Appropriate rDNA segments were first cloned into bacteriophage M13 vectors and subjected to bisulfite and oligonucleotide-directed mutagenesis in vitro. Subsequently, the mutagenized sequences were placed within the rrnB operon of plasmid pNO1301 and the mutant plasmids were used to transform E. coli recipients. The growth rates of cells containing the mutant plasmids were determined and compared with that of cells containing the wild-type plasmid. Only those mutations which occurred at highly conserved positions, or were expected to disrupt the secondary structure of the binding site, increased the doubling time appreciably. The most striking changes in growth rate resulted from mutations that altered a small internal loop within the S8 binding site. This structure is phylogenetically conserved in prokaryotic 16S rRNAs and may play a direct role in S8-16S rRNA recognition and interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号