首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
There is growing evidence that diesel exhaust particles (DEP) can induce allergic diseases with increased IgE production and preferential activation of Th2 cells. To clarify the cellular basis of the role of DEP in the induction of Th2-dominant responses, we examined the effects of DEP on the cytokine production by T cells stimulated with anti-CD3/CD28 Ab and on that by monocyte-derived dendritic cells (MoDCs) stimulated with CD40L and/or IFN-gamma. We examined IFN-gamma, IL-4, IL-5, IL-8, and IL-10 produced by T cells and TNF-alpha, IL-1beta, IL-10, and IL-12 produced by MoDCs using real-time PCR analysis or by ELISA. To highlight the effects of DEP, we compared the effects of DEP with those of dexamethasone (DEX) and cyclosporin A (CyA). DEP significantly suppressed IFN-gamma mRNA expression and protein production, while it did not affect IL-4 or IL-5 mRNA expression or protein production. The suppressive effect on IFN-gamma mRNA expression was more potent than that of DEX and comparable at 30 mug/ml with 10(-7) M CyA. The suppressive effect on IFN-gamma production was also more potent than that of either DEX or CyA. DEP suppressed IL-12p40 and IL-12p35 mRNA expression and IL-12p40 and IL-12p70 production by MoDCs, while it augmented IL-1beta mRNA expression. Finally, by using a thiol antioxidant, N-acetyl cysteine, we found that the suppression of IFN-gamma production by DEP-treated T cells was mediated by oxidative stress. These data revealed a unique characteristic of DEP, namely that they induce a Th2 cytokine milieu in both T cells and dendritic cells.  相似文献   

10.
11.
Recent studies have identified an indirect genotoxicity pathway involving inflammation as one of the mechanisms underlying the carcinogenic effects of air pollution/diesel exhaust particles (DEP). We investigated the short-term effects of DEP on markers of inflammation and genotoxicity in vitro and in vivo. DEP induced an increase in the mRNA level of pro-inflammatory cytokines and a higher level of DNA strand breaks in the human lung epithelial cell line A549 in vitro. For the in vivo study, mice were exposed by inhalation to 20 or 80 mg/m3 DEP either as a single 90-min exposure or as four repeated 90-min exposures (5 or 20 mg/m3) and the effects in broncho-alveolar lavage (BAL) cells and/or lung tissue were characterized. Inhalation of DEP induced a dose-dependent inflammatory response with infiltration of macrophages and neutrophils and elevated gene expression of IL-6 in the lungs of mice. The inflammatory response was accompanied by DNA strand breaks in BAL cells and oxidative DNA damage and increased levels of bulky DNA adducts in lung tissue, the latter indicative of direct genotoxicity. The effect of a large single dose of DEP was more pronounced and sustained on IL-6 expression and oxidative DNA damage in the lung tissue than the effect of the same dose administered over four days, whereas the reverse pattern was seen in BAL cells. Our results suggest that the effects of DEP depend on the rate of delivery of the particle dose. The mutation frequency (MF), after DEP exposure, was determined using the transgenic Muta Mouse and a similar exposure regimen. No increase was observed in MF in lung tissue 28-days after exposure. In conclusion, short-term exposure to DEP resulted in DNA strand breaks in BAL cells, oxidative DNA damage and DNA adducts in lungs; and suggested that DNA damage in part is a consequence of inflammatory processes. The response was not associated with increased MF, indicating that the host defence mechanisms were sufficient to counteract the adverse effects of inflammation. Thus, there may be thresholds for the inflammation-associated genotoxic effects of DEP inhalation.  相似文献   

12.
13.
14.
15.
16.
17.
Acting as fuel combustion catalysts to increase fuel economy, cerium dioxide (ceria, CeO2) nanoparticles have been used in Europe as diesel fuel additives (Envirox™). We attempted to examine the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEP) or diesel doped with various concentrations of CeO2 (DEP-Env) on innate immune responses in THP-1 and primary human peripheral blood mononuclear cells (PBMC). Batches of DEP and DEP-Env were obtained on three separate occasions using identical collection and extraction protocols with the aim of determining the reproducibility of particles generated at different times. However, we observed significant differences in size and surface charge (zeta potential) of the DEP and DEP-Env across the three batches. We also observed that exposure of THP-1 cells and PBMC to identical concentrations of DEP and DEP-Env from the three batches resulted in statistically significant differences in bioreactivity as determined by IL-1β, TNF-α, IL-6, IFN-γ, and IL-12p40 mRNA (by qRT-PCR) and protein expression (by ELISPOT assays). Importantly, bioreactivity was noted in very tight ranges of DEP size (60 to 120 nm) and zeta potential (−37 to −41 mV). Thus, these physical properties of DEP and DEP-Env were found to be the primary determinants of the bioreactivity measured in this study. Our findings also point to the potential risk of over- or under- estimation of expected bioreactivity effects (and by inference of public health risks) from bulk DEP use without taking into account potential batch-to-batch variations in physical (and possibly chemical) properties.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号