首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using a human αB-crystallin genomic probe and human-mouse somatic cell hybrids, the human αB-gene was assigned to chromosome 11 and further corroborated by in situ hybridization to normal metaphase chromosomes. This assignment confirmed and regionally mapped the locus to q22.3–23.1.  相似文献   

2.
Localization of the polymorphic human calcitonin gene on chromosome 11   总被引:7,自引:0,他引:7  
Summary A molecular probe containing a 584 base pairs sequence corresponding to part of the human calcitonin mRNA was used for the chromosomal assignment of the calcitonin gene. Restriction endonuclease analysis of DNA from human-Chinese hamster and human-mouse somatic cell hybrids, including some containing a translocation of human chromosomes, placed the calcitonin gene in the p14qter region of chromosome 11.Analysis of human DNA showed that the calcitonin gene has a polymorphic site for restriction endonuclease TaqI.  相似文献   

3.
Rom-1 is a retinal integral membrane protein that, together with the product of the human retinal degeneration slow gene (RDS), defines a photoreceptor-specific protein family. The gene for rom-1 (HGM symbol: ROM1) has been assigned to human chromosome 11 and mouse chromosome 19 by Southern blot analysis of somatic cell hybrid DNAs. ROM1 was regionally sublocalized to human 11p13-11q13 by using three mouse-human somatic cell hybrids; in situ hybridization refined the sublocalization to human 11q13. Analysis of somatic cell hybrids suggested that the most likely localization of ROM1 is in the approximately 2-cM interval between human PGA (human pepsinogen A) and PYGM (muscle glycogen phosphorylase). ROM1 appears to be a new member of a conserved syntenic group whose members include such genes as CD5, CD20, and OSBP (oxysterol-binding protein), on human chromosome 11 and mouse chromosome 19. Localization of the ROM1 gene will permit the examination of its linkage to hereditary retinopathies in man and mouse.  相似文献   

4.
Summary Segregation analysis of human biochemical markers and chromosomes in human-mouse somatic cell hybrids allowed to demonstrate synteny of ICD M with the genes for phosphomannose isomerase and pyruvate kinase and to assign the linkage group to human chromosome 15.  相似文献   

5.
Assignment of the alpha B-crystallin gene to human chromosome 11   总被引:2,自引:0,他引:2  
Using a human alpha B-crystallin genomic probe and human-mouse somatic cell hybrids, the human alpha B-gene was assigned to chromosome 11 and further corroborated by in situ hybridization to normal metaphase chromosomes. This assignment confirmed and regionally mapped the locus to q22.3-23.1.  相似文献   

6.
The dominant selectable gene, Ecogpt, has been introduced, by the calcium phosphate precipitation technique, into normal human fibroblasts, along with the SV40 early region genes. In one transfectant clone, integration of these sequences into human chromosome 17 was demonstrated by the construction of human-mouse somatic cell hybrids, selected for by growth in medium containing mycophenolic acid and xanthine. A whole cell hybrid, made between the human transfectant and a mouse L cell, was used as donor of the Ecogpt-carrying human chromosome 17 to 'tribrids' growing in suspension, made by whole cell fusion between a mouse thymoma cell line, and to microcell hybrids made with a mouse teratocarcinoma cell line. Two tribrids contained karyotypically normal human chromosomes 17 and a small number of other human chromosomes, while a third tribrid had a portion of the long arm of chromosome 17 translocated to mouse as its only human genetic material. Two independent microcell hybrids contained a normal chromosome 17 and no other human chromosome on a mouse teratocarcinoma background. These experiments demonstrate the ability to construct human-mouse somatic cell hybrids using a dominant selection system. By applying this approach it should be possible to select for a wide range of different human chromosomes in whole cell and microcell hybrids. In particular, transfer of single human chromosomes to mouse teratocarcinoma cells will allow examination of developmentally regulated human gene sequences after differentiation of such hybrids.  相似文献   

7.
The chromosomal location of the human gene for erythropoietin (EPO) was determined by Southern blot hybridization analysis of a panel of human-mouse somatic hybrid cell DNAs. DNAs from cell hybrids containing reduced numbers of human chromosomes were treated with the restriction enzyme PstI and screened with a cloned human EPO cDNA probe. EPO is assigned to human chromosome 7 based on the complete cosegregation of EPO with this chromosome in all 45 cell hybrids tested. A cell hybrid containing a translocated derivative of chromosome 7 localizes EPO to 7pter----q22. A HindIII restriction fragment length polymorphism is detected by hybridization of the EPO cDNA probe to human genomic DNA.  相似文献   

8.
Human coronavirus 229E, n enveloped, RNA-containing virus, causes respiratory illness in man and is serologically related to murine coronavirus JHM, which causes acute and chronic demyelination in rodents. 229E displays a species-specific host range restriction whose genetic basis was studied in human-mouse hybrids. 229E replicated in human WI-38 cells but not in three mouse cell lines tested (RAG, LM/TK-, and A9). Human coronavirus sensitivity (HCVS) was expressed as a dominant phenotype in hybrids, indicating that mouse cells do not actively suppress 229E replication. HCVS segregated concordantly with the human chromosome 15 enzyme markers mannose phosphate isomerase (MPI) and the muscle form of pyruvate kinase (PKM2), and analysis of hybrids containing an X/15 translocation [t(X;15)(p11;q11)] localized HCVS to the q11 leads to qter region of chromosome 15. HCVS might code for a specific surface receptor, allowing 229E to be absorbed to and received within the host cell.  相似文献   

9.
Assignment of the human fibronectin structural gene to chromosome 2   总被引:1,自引:0,他引:1  
A cloned human cDNA probe for fibronectin (FN) containing 1.3 kb of the human FN coding region has been used to determine the chromosome that encodes the structural gene in human-mouse somatic cell hybrids. The results show that human chromosome 2 encodes the FN structural gene.  相似文献   

10.
By fusion of human leukocytes and cells of the murine myeloid cell line WEHI-TG, we produced human-mouse myeloid cell hybrids. Hybrids which contain human chromosome 11 have been demonstrated to express the myeloid-associated carbohydrate antigen Lex (Geurts van Kessel, A. H. M., Tetteroo, P. A. T., Von dem Borne, A. E. G. Kr., Hagemeijer, A., and Bootsma, D. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3748-3752). In this paper, we report that the hybrids that contain chromosome 11 also expressed the Lex-related antigens Ley and sialyl-Lex. Glycosyltransferase activities were measured in a panel of six such hybrid cell lines, and the correlation to antigen expression and to the presence of human chromosomes was investigated. GDP-fucose:[Gal beta 1----4]GlcNAc alpha 1----3-fucosyltransferase activity in the hybrids tested correlated with the expression of Lex, Ley, and sialyl-Lex and with the occurrence of chromosome 11. No such correlation was found for several other glycosyltransferases involved in the synthesis of these antigens. These findings suggest that the gene for alpha 3-fucosyltransferase is located on chromosome 11 and that it is through the activity of this enzyme that the expression of Lex, Ley, and sialyl-Lex in human myeloid cells is regulated.  相似文献   

11.
The genes coding for human pepsinogen (PGA3, PGA4, and PGA5) were assigned to chromosome region 11q13 by in situ hybridization. Previously we localized the PGA gene complex to a centromeric region of chromosome 11 (p11----q13) by Southern blot analysis of mouse-human somatic cell hybrids. Our in situ hybridization results confirm this assignment and further localize the genes to a smaller region on the long arm.  相似文献   

12.
Summary The assignment of the human prealbumin (PALB) gene to chromosome region 18q11–q12.1 has been achieved using a human genomic probe in the study of human-mouse somatic cell hybrids and by in situ hybridization. Because familial amyloidotic polyneuropathy was reported previously to be due to a mutation in prealbumin, it can be inferred that the gene for this disorder also maps to 18q11.2–q12.1.  相似文献   

13.
The locus coding for the presumed structural gene for fibronectin has been mapped to human chromosome 2 using human-mouse somatic cell hybrids. The assignment of fibronectin has been made by testing man-mouse somatic cell hybrids with two anti-human fibronectin monoclonal antibodies which recognize different antigenic determinants of human, but not mouse, fibronectin, Both monoclonal antibodies demonstrate a highly concordant association between the presence of two different human fibronectin antigens and human chromosome 2.  相似文献   

14.
The chromosomal loci of the human parvalbumin and oncomodulin single-copy genes that encode structurally and evolutionarily closely related Ca(2+)-binding proteins were determined by somatic cell hybrid analysis. Southern blot analysis of genomic DNA from 25 human-hamster somatic cell hybrids showed that the human gene for oncomodulin resides on chromosome 7. Analysis of human-mouse hybrids selectively retaining human chromosome 7 or a portion of it allowed specific assignment of the gene locus to the p11-p13 region of chromosome 7 known to be mutated or deleted in patients with the Greig cephalopolysyndactyly syndrome. By gene dosage analysis on Southern blots, we showed that the gene for human parvalbumin maps distally to the cat eye syndrome marker D22S9 on chromosome 22q. Using somatic cell hybrids containing parts of human chromosome 22, the parvalbumin gene was sublocalized to the region 22q12-q13.1. This region contains a linkage group that maps to mouse chromosome 15, region E, and includes the SIS, ARSA, and DIA 1 genes. Our findings are consistent with the recent localization of the mouse parvalbumin gene to this region by two independent methods (C. H. Zühlke et al., 1989, Genet. Res. 54:37-43; S. Adolph et al., 1989, Cytogenet. Cell Genet. 52:177-179).  相似文献   

15.
Summary We have used a full length cDNA clone to determine the chromosomal location ofthegene encoding human ornithine aminotransferase (OAT), a mitochondrial matrix enzyme. Southern blot analysis of ScaI-digested DNA from 34 human-mouse somatic cell hybrids revealed 11 human fragments. Three fragments mapped to chromosome 10q23-10qter, confirming the previous provisional assignment of the functional gene to this autosome by analysis of OAT expression in somatic cell hybrids (O'Donnell et al. 1985). The remaining eight fragments were assigned to the X chromosome, and regionally assigned to Xp21-Xp11 by use of an X-chromosome mapping panel. These X chromosome sequences could represent pseudogenes, or related members of a multigene family. Two of the X chromosome fragments are alternate alleles of a restriction fragment length polymorphism (RFLP) making this OAT-related locus an excellent genetic marker. The RFLP may now be used to determine any possible relationship between this locus and several X-linked eye defects.  相似文献   

16.
Summary Human pepsinogen (PGA) exhibits extensive polymorphism that can be detected both at the protein and the DNA level. We describe here two restriction fragment length polymorphisms, EcoRI and BglII, which provide for the detection of three of the most common PGA haplotypes (A, B, and C) in the United States population. The relationship of these polymorphisms to each PGA haplotype was determined by analysis of DNA from individuals exhibiting the corresponding protein phenotypes and by analysis of a series of human × mouse somatic cell hybrids containing the individual chromosome 11 homologous from heterozygous individuals exhibiting the AB and AC protein phenotypes. The use of the BglII polymorphism in combination with previously described EcoRI polymorphism provides a very informative marker of 11q13.  相似文献   

17.
A gene necessary for the expression of human mitochondrial glutamate oxaloacetate transaminase (GOT-2) has been assigned to chromosome 16 on the basis of an immunochemical analysis of human-mouse somatic cell hybrids. Mitochondrial GOT cosegregates with adenine phosphoribosyl transferase (E.C. 2.4.2.7.).  相似文献   

18.
A human-mouse hybrid segregant HM76Dd40-6 with new characteristics was derived from the hybrid cell line HM76Dd containing human chromosome 19 as the only human chromosome. Three virus sensitivities located on human chromosome 19 (PVS, E11S and RDRC) were lost in HM76Dd40-6, while six other genes (C3, LDLR, EF2, GPI, PEPD and MANB) were retained. Cytogenetic analysis and in situ hybridization using human or mouse repeated sequences as probes showed that the region q13.1-qter of human chromosome 19 had been replaced by a fragment of mouse chromosome. Our results permit further regional assignment for the following five genes on human chromosome 19: GPI in the region cen-q12, MANB in p13.2-q12, E11S and RDRC in q13.1-qter, and EF2 in pter-q12.  相似文献   

19.
FUSE, a human gene which promotes polykaryocyte formation, has been identified and examined in cocultivation assays between rat XC cells and human-mouse hybrids retaining different combinations of human chromosomes. Polykaryocyte formation was never detected when parental cells of hybrids were cocultivated with XC cells. Somatic genetic synteny analysis employing different hybrid sets demonstrated that FUSE was coexpressed with the chromosome 10 markers glutamate oxaloacetate transaminase (GOTs) and an external membrane protein (EMP-130). Cytogenetic analysis confirmed this assignment to human chromosome 10. FUSE was expressed by hybrids made with both human leukocytes and fibroblasts from several individuals, indicating the gene is found in different tissues and may be ubiquitous. Only XC cells were involved in polykaryocyte formation as demonstrated by 33258 Hoechst staining and the absence of heteropolymers between rat and cell hybrid multimeric enzymes. Evidence suggests that the gene FUSE produces a nondiffusible and noninfectious product that is associated with the human-mouse hybrid surface.  相似文献   

20.
We have constructed somatic cell hybrids between the murine T cell line BW5147 and cells from patients suffering from T cell acute lymphoblastic leukemia. The obtained hybrid clones were analyzed for expression of human T cell antigens and presence of human chromosomes. T cell hybrids derived from fusion between the BW5147 cell line and bone marrow cells from a patient with pre-T acute lymphoblastic leukemia (TdT+/HLA-DR+/Tp41+/T11+/T1-/T6-/T4-/T8-/T3-) appeared to express the human T cell antigen Tp41, which can be recognized by the monoclonal antibodies 3A1 and WT1. Although this panel of hybrid cells contained all human chromosomes, no other T cell antigens were expressed. Fusion of the BW5147 cell line with peripheral blood cells from a patient with a more mature T cell acute lymphoblastic leukemia (TdT+/HLA-DR+/Tp41+/T11+/T1+/T6-/T4+/T8+/T3-) resulted in a panel of hybrid clones that expressed not only the Tp41 antigen, but also the human T cell antigens T1 and T4; two hybrids even expressed the T3 antigen. This panel of hybrids also contained the whole human genome. The two panels of human-mouse T cell hybrids allowed us to assign the genes coding for the human T cell antigens Tp41, T1, and T4 to human chromosomes 17, 11, and 12, respectively. Furthermore, these data support our previous suggestion that the expression of human lymphoid differentiation antigens in human-mouse lymphoid hybrids is influenced by the differentiation stage of the fusion partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号