首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Chitosan microsphere (CS) was prepared by phase-inversion method as the support matrices. Cibacron Blue F3GA (CB) was covalently attached to the chitosan microspheres, and thus the novel dye-affinity adsorbent was obtained. These Cibacron Blue F3GA-attached chitosan microspheres (CB-CS) were used in the catalase (CAT) adsorption studies. The maximum CAT adsorption capacity of Cibacron Blue F3GA-attached chitosan microspheres was 28.4 mg/g at pH 7.0. Langmuir adsorption model was found to be applicable in interpreting CAT adsorption. Significant amount of the adsorbed CAT (up to 90.6%) was eluted in the elution medium containing 0.5 M NaSCN at pH 8.0. It appears that CB-CS can be applied for adsorption of CAT without causing any denaturation.  相似文献   

2.
Microporous polyamide membranes were activated by bisoxirane and subsequently bound with chitosan (CS) to amplify reactive groups. Then polylysine (PLL) as ligand was immobilized onto the CS-coated nylon membranes. The contents of CS and PLL of PLL-attached membranes were 93.2 and 90.4 mg/g nylon membrane, respectively. Such PLL-attached membranes were used to adsorb bilirubin from the bilirubin-phosphate solution and bilirubin-albumin solution. The adsorption mechanism of bilirubin and the effects of temperature, initial concentration of bilirubin, albumin concentration and ionic strength on adsorption were investigated by batch experiments. The results showed that the adsorption capacity increased with increasing the temperature while decreased with increasing the NaCl concentration and albumin concentration, and the adsorption isotherm fitted the Freundlich model well. The result of dynamic experiment showed PLL-attached membranes can well remove the bilirubin from the bilirubin-albumin solution.  相似文献   

3.
The adsorption of papain on Reactive Blue 4 dye–ligand affinity membrane was investigated in a batch system. The combined effects of operating parameters such as initial pH, temperature, and initial papain concentration on the adsorption were analyzed using response surface methodology. The optimum adsorption conditions were determined as initial pH 7.05, temperature 39 °C, and initial papain concentration 11.0 mg/ml. At optimum conditions, the adsorption capacity of dye–ligand affinity membrane for papain was found to be 27.85 mg/g after 120 min adsorption. The papain was purified 34.6-fold in a single step determined by fast protein liquid chromatography. More than 85% of the adsorbed papain was desorbed using 1.0 M NaCl at pH 9.0 as the elution agent. The purification process showed that the dye–ligand immobilized composite membrane gave good separation of papain from aqueous solution.  相似文献   

4.
A novel activated nylon-based membrane was prepared and applied as an adsorbent for the removal of Cu2+ from aqueous solutions. It involved three stages: (i) deposition of a chitosan layer that functionalized the nylon membrane, (ii) cross-linking with epichlorohydrin to stabilize the polymer layer and enabling grafting, and (iii) iminodiacetic acid grafting. SEM and EDX techniques were used to characterize the composition of the membranes. Dynamic adsorption experiments on membranes were carried out at various pH values, contact times, adsorption dosages and initial metal concentrations to determine optimum membrane adsorption properties. The adsorption isotherm relating to Cu2+ fitted the Langmuir equation and an adsorption equilibrium constant and adsorption capacity of 2.345x10(-3)mg/ml and 10.794mg/g were determined, respectively. The experimental data was analyzed using two adsorption kinetic models, pseudo-first-order and pseudo-second-order with the latter system providing the best fit. Finally complete regeneration of the activated nylon membrane was possible using 100mmol/l Na2EDTA.  相似文献   

5.
An affinity dye ligand, Cibacron Blue F3GA was covalently attached onto commercially available microporous polyamide hollow-fibre membranes for human serum albumin (HSA) adsorption from both aqueous solutions and human plasma. Different amounts of Cibacron Blue F3GA were incorporated on the polyamide hollow-fibres by changing the dye attachment conditions, i.e. initial dye concentration, addition of sodium carbonate and sodium chloride. The maximum amount of Cibacron Blue F3GA attachment was obtained at 42.5 μmol g−1 when the hollow-fibres were treated with 3 M HCl for 30 min before performing the dye attachment. HSA adsorption onto unmodified and Cibacron Blue F3GA-derived polyamide hollow-fibre membranes was investigated batchwise. The non-specific adsorption of HSA was very low (6.0 mg g−1 hollow-fibre). Cibacron Blue F3GA attachment onto the hollow-fibres significantly increased the HSA adsorption (147 mg g−1 hollow-fibre). The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma (230 mg HSA g−1 hollow-fibre). Desorption of HSA from Cibacron Blue F3GA derived hollow-fibres was obtained using 0.1 M Tris–HCl buffer containing 0.5 M NaSCN or 1.0 M NaCl. High desorption ratios (up to 98% of the adsorbed HSA) were observed. It was possible to reuse Cibacron Blue F3GA derived polyamide hollow-fibre without significant decreases in the adsorption capacities.  相似文献   

6.
A membrane-rich preparation was isolated from adult rat skeletal muscle in low salt media and further fractionated in sucrose gradients. Fraction F2, with a relative density of 1.092-1.119, consisted of sealed membrane vesicles which were enriched in plasma membrane markers. These vesicles were capable of stereospecific D-glucose uptake which was sensitive to cytochalasin B (CB). The membranes were also enriched in high affinity [3H]CB binding activity (Kd of 0.28 microM). [3H]CB binding to the glucose carrier of these plasma membranes, estimated as the fraction of binding protectable by D-glucose, ranged between 2.5 and 7.4 pmol/mg protein in several membrane preparations. The amount of [3H]CB binding to muscle membranes from newborn and adult rats was not markedly different. Trypsin, at low concentrations, altered the molecular weight of several membrane components, without affecting [3H]CB binding. Higher concentrations of trypsin abolished [3H]CB binding. Both 2,4-dinitrofluorobenzene (0.1 mM) and N-ethylmaleimide (15 mM) inhibited [3H]CB binding; inhibition by these reagents was prevented by inclusion of micromolar concentrations of CB in the reaction mixture. Several procedures that extracted specific proteins enriched the D-glucose-sensitive [3H]CB binding to the protein-depleted membranes. Antibody raised against the glucose carrier of human red cell membranes cross-reacted with a polypeptide of Mr about 45K of muscle membranes which might represent the glucose carrier.  相似文献   

7.
《Process Biochemistry》2010,45(10):1713-1719
Cibacron Blue F3GA (CB) was covalently attached onto the bacterial cellulose (BC) nanofibers for human serum albumin (HSA) depletion from human serum. The BC nanofibers were produced by Acetobacter xylinum in the Hestrin–Schramm medium in a static condition for 14 days. The CB content of the BC nanofibers was 178 μmol/g. The specific surface area of the BC nanofibers was determined to be 914 m2/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA on the BC nanofibers was very low (1.4 mg/g polymer). CB attachment onto the BC nanofibers significantly increased the HSA adsorption (1800 mg/g). The maximum HSA adsorption was observed at pH 5.0. The HSA adsorption capacity decreased drastically with an increase of the aqueous phase concentration of sodium chloride. The elution studies were performed by adding 1 M NaCl to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the binding of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 96.5% for all studied concentrations. Proteins in the serum and eluted portion were analyzed by SDS-PAGE for testing the efficiency of HSA depletion from human serum. Eluted proteins include mainly HSA.  相似文献   

8.
A novel affinity sorbent system for direct bilirubin removal from human plasma was developed. These new adsorbents comprise Cibacron Blue F3GA as the specific ligand, and microporous membranous poly(tetrafluoroethylene) capillary (modified by coating with a hydrophilic layer of poly(vinyl alcohol) after activation) as the carrier matrix. The affinity adsorbents carrying 126.5 micromol Cibacron Blue F3GA/g polymer was then used to remove bilirubin in a flow-injection system. Non-specific adsorption on the poly(vinyl alcohol) coated capillary remains low, and higher affinity adsorption capacity, of up to 76.2 mg/g polymer was obtained after dye immobilization. The bilirubin adsorption capacity of the affinity capillary decreased with increase in the recirculation rate of plasma. The adsorption capacity increased with increase the temperature while decreased with increase the ionic strength. The maximum adsorption was only observed in neutral solution (pH 6-7). The adsorption isotherm fitted the Langmuir model well. These new adsorbents have higher velocity of mass transfer, better adsorption capacity, less fouling, longer service life and good reusability. The results of blood tests suggested the dye affinity capillary has good blood compatibility.  相似文献   

9.
在浸润条件下,以0.5%(v/v)戊二醛交联的高分子膜尼龙载体固定化木瓜蛋白酶。对固定化条件进行了优化,比较了固定化酶与游离酶的酶学参数。结果表明,4℃、pH6.0条件下,将膜载体浸润于2mg/mL酶液中5h,固定化酶活为303.4U/g。固定化酶最适反应pH为6.0~7.0,最适反应温度为65℃。其pH稳定性、热稳定性均比游离酶高。  相似文献   

10.
Aluminum [Al(III)] adsorption onto dye-incorporated poly(ethylene glycol dimethacrylate-hydroxyethyl methacrylate) [poly(EGDMA-HEMA)] microspheres was investigated. Poly(EGDMA-HEMA) microspheres, in the size range of 150–200 μm, were produced by a modified suspension polymerization of EGDMA and HEMA. The reactive dyes (i.e., Congo Red, Cibacron Blue F3GA and Alkali Blue 6B) were covalently incorporated to the microspheres. The maximum dye load was 14.5 μmol Congo Red/g, 16.5 μmol Cibacron Blue F3GA/g and 23.7 μmol Alkali Blue 6B/g polymer. The maximum Al(III) adsorption on the dye microspheres from aqueous solutions containing different amounts of Al(III) ions were 27.9 mg/g, 17.3 mg/g and 12.2 mg/g polymer for the Congo Red, Cibacron Blue F3GA and Alkali Blue 6B, respectively. The maximum Al(III) adsorption was observed at pH 7.0 in all cases. Non-specific Al(III) adsorption was about 0.84 mg/g polymer under the same conditions. High desorption ratios (95%) were achieved in all cases by using 0.1 M HNO3. It was possible to reuse these dye-incorporated poly(EGDMA-HEMA) microspheres without significant losses in the Al(III) adsorption capacities.  相似文献   

11.
Magnetic poly(2-hydroxyethyl methacrylate) mPHEMA beads carrying Cibacron Blue F3GA were prepared by suspension polymerization of HEMA in the presence of Fe3O4 nano-powder. Average size of spherical beads was 80-120 microm. The beads had a specific surface area of 56.0m(2)/g. The characteristic functional groups of dye-attached mPHEMA beads were analyzed by Fourier transform infrared spectrometer (FTIR) and Raman spectrometer. mPHEMA with a swelling ratio of 68% and carrying 28.5 micromol CibacronBlueF3GA/g were used for the purification of lysozyme. Adsorption studies were performed under different conditions in a magnetically stabilized fluidized bed (i.e., pH, protein concentration, flow-rate, temperature, and ionic strength). Lysozyme adsorption capacity of mPHEMA and mPHEMA/Cibacron Blue F3GA beads were 0.8 mg/g and 342 mg/g, respectively. It was observed that after 20 adsorption-desorption cycle, mPHEMA beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the desorbed lysozyme was about 87.4% with recovery about 79.6%. The specific activity of the desorbed lysozyme was high as 41.586 U/mg.  相似文献   

12.
Cibacron Blue F3GA was covalently attached onto monosize poly(glycidyl methacrylate) [poly(GMA)] beads for purification of lysozyme from chicken egg white. Monosize poly(GMA) beads, 1.6 microm in diameter, were produced by a dispersion polymerization technique. The content of epoxy groups on the surface of the poly(GMA) sample determined by the HCl-pyridine method (3.8 mmol/g). Cibacron Blue F3GA loading was 1.73 mmol/g. The monosize beads were characterized by elemental analysis, FTIR and SEM. Adsorption studies were performed under different conditions in a batch system (i.e., medium pH, protein concentration, temperature and ionic strength). Maximum lysozyme adsorption amount of poly(GMA) and poly(GMA)-Cibacron Blue F3GA beads were 1.6 and 591.7 mg/g, respectively. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. Results suggest that chemisorption processes could be the rate-limiting step in the adsorption process. It was observed that after 10 adsorption-elution cycle, poly(GMA)-Cibacron Blue F3GA beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg-white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the eluted lysozyme was analyzed by SDS-PAGE and found to be 88% with recovery about 79%. The specific activity of the eluted lysozyme was high as 43,600 U/mg.  相似文献   

13.
Cibacron Blue F3GA was covalently attached onto monosize poly(glycidyl methacrylate) [poly(GMA)] beads for removal of human serum albumin (HSA) from human serum. Monosize poly(GMA) beads, 1.6 microm in diameter, were produced by dispersion polymerization. Cibacron Blue F3GA loading was 1.73 mol/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA was low (0.8 mg/g polymer). Dye attachment onto the monosize beads significantly increased the HSA adsorption (189.8 mg/g). The maximum HSA adsorption was observed at pH 5.0. With an increase of the aqueous phase concentration of sodium chloride, the adsorption capacity decreased drastically. The equilibrium adsorption of HSA significantly decreased with increasing temperature. The elution studies were performed by adding 0.1 M Tris/HCl buffer containing 0.5 M NaSCN to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the adsorption of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 87% for all studied concentrations. To test the efficiency of HSA removal from human serum, proteins in the serum and eluted portion were analyzed by two-dimensional gel electrophoresis. Eluted proteins include mainly albumin, and a small number of nonalbumin proteins such as apo-lipoprotein A1, sero-transferrin, haptoglobulin and alpha1-antitrypsin were bound by the dye-affinity beads. IgA was not identified in eluted fraction.  相似文献   

14.
Highly porous nitrocellulose membranes were prepared by a solvent casting technique for the first time to immobilize α-amylase. An affinity dye, namely Cibacron Blue F3GA (CB), was incorporated covalently within the structure. The nitrocellulose–CB derivatized membranes were used for the immobilization of a starch degrading enzyme, α-amylase. Optimum conditions of immobilization for highest apparent activity were determined as pH 6.0, temperature 50°C and initial enzyme concentration 0.317 KNU/l. Under these optimum conditions, maximum enzyme immobilization yield was around 21% of the initial amount of the enzyme in the solution. Performance of free and immobilized enzymes at the same amount was compared for repeated runs. Up to the third use, immobilized enzyme showed higher activity than that of free enzyme mainly due to higher enzyme concentration in the membrane structure, then the apparent activity decreased gradually. However, when regenerated by switching pH to cause contraction/expansion of the structure, the membrane showed the highest activity, almost 2.5 times than that of the free enzyme. This unusual feature along with inexpensive cost may well make the nitrocellulose membrane an economical material for industrial application in glucose syrup production.  相似文献   

15.
Papain, which is an industrially important enzyme, has been immobilized on fibrous polymer-modified composite beads, namely poly(methacrylic acid)-grafted chitosan/clay. Characterization studies have been done using FTIR and SEM analysis. Operating parameters such as pH and initial concentration of papain have been varied to obtain the finest papain immobilized polymer-modified composite beads. The immobilization capacity of composite beads has been determined as 34.47 ± 1.18 (n = 3) mg/g. The proteolytic activity of immobilized papain was operated using bovine serum albumin (BSA) and maximum velocity (V max) and Michaelis–Menten constant (Km) values of the free and immobilized enzymes were determined using Lineweaver–Burk and Eadie–Hofstee equations. Usability of papain immobilized polymer-modified composite beads as adsorbents for the elimination of mercury was investigated. The maximum removal capacity of PIPMC beads has been found to be 4.88 ± 0.21 mg Hg/g when the initial metal concentration and weight of polymer-modified composite beads were 50 mg/L and 0.04 g at pH 7, respectively. Mercury removal performance of the papain immobilized polymer-modified composite beads was investigated in conjunction with Cu (II), Zn (II) and Cd (II) ions. The mercury adsorption capacity of papain immobilized polymer-modified composite beads was a slight reduction from 1.15 to 0.89 mg/g in presence of multiple metal salts.  相似文献   

16.
Cibacron Blue F3GA-immobilized poly(EGDMA–HEMA) microbeads were investigated as a specific sorbent for bilirubin removal from human plasma. The poly(EGDMA–HEMA) microbeads were prepared by a modified suspension copolymerization technique. Cibacron Blue F3GA was covalently coupled to the poly(EGDMA–HEMA) microbeads via the nucleophilic reaction between the chloride of its triazine ring and the hydroxyl groups of the HEMA molecule, under alkaline conditions. Bilirubin adsorption was investigated from hyperbilirubinemic human plasma on the poly(EGDMA–HEMA) microbeads containing different amounts of immobilized Cibacron Blue F3GA, (between 5.0–16.5 μmol/g). The non-specific bilirubin adsorption on the unmodified poly(EGDMA–HEMA) microbeads were 0.32 mg/g from human plasma. Higher bilirubin adsorption values, up to 14.8 mg/g, were obtained with the Cibacron Blue F3GA-immobilized microbeads. Bilirubin molecules interacted with these sorbents directly. Contribution of albumin adsorption on the bilirubin adsorption was pronounced. Bilirubin adsorption increased with increasing temperature.  相似文献   

17.
Poly(2-hydroxyethylmethacrylate–ethyleneglycoldimethacrylate) [poly(HEMA–EGDMA)] microspheres carrying Cibacron Blue F3GA and/or thionein were prepared and used for the removal of cadmium ions Cd(II) from human plasma. The poly(HEMA–EGDMA) microspheres, in the size range of 150–200 μm in diameter, were produced by a modified suspension copolymerization of HEMA and EGDMA. The reactive triazinyl dye-ligand Cibacron Blue F3GA was then covalently incorporated into the microspheres. The maximum dye incorporation was 16.5 μmol/g. Then, thionein was bound onto the Cibacron Blue F3GA-incorporated microspheres under different conditions. The maximum amount of thionein bound was 14.3 mg/g. The maximum amounts of Cd(II) ions removed from human plasma by poly(HEMA–EGDMA)–Cibacron Blue F3GA and poly(HEMA–EGDMA)–Cibacron Blue F3GA–thionein were of 17.5 mg/g and 38.0 mg/g, respectively. Cd(II) ions could be repeatedly adsorbed and desorbed with both types of microspheres without significant loss in their adsorption capacity.  相似文献   

18.
A novel magnetic support was prepared by an oxidization-precipitation method with poly(vinyl alcohol) (PVA) as the entrapment material. Transmission electron microscopy indicated that the magnetic particles had a core-shell structure, containing many nanometer-sized magnetic cores stabilized by the cross-linked PVA. The particles showed a high magnetic responsiveness in magnetic field, and no aggregation of the particles was observed after the particles had been treated in the magnetic field. These facts indicated that the particles were superparamagnetic. Cibacron blue 3GA (CB) was coupled to the particles to prepare a magnetic affinity support (MAS) for protein adsorption. Lysozyme was used as a model protein to test the adsorption properties of the MAS. The adsorption equilibrium of lysozyme to the MAS was described by the Langmuir-type isotherm. The capacity for lysozyme adsorption was more than 70 mg/g MAS (wet weight) at a relatively low CB coupling density (3-5 micromol/g). In addition, 1.0 M NaCl solution could be used to dissociate the adsorbed lysozyme. Finally, the MAS was recycled for the purification of alcohol dehydrogenase (ADH) from clarified yeast homogenates. Under proper conditions, the magnetic separation yielded over 5-fold purification of the enzyme with 60% recovery of the enzyme activity.  相似文献   

19.
Macroporous poly(glycidyl methacrylate-triallyl isocyanurate-divinylbenzene) was prepared by a radical suspension copolymerization. Reaction of the copolymer with 2-hydroxyethyl amine was employed to obtain a hydrophilic matrix. An affinity dye, Cibacron blue 3GA, was then coupled covalently to prepare a novel macroporous affinity adsorbent. The surface and pore structure of the affinity adsorbent were examined by scanning electron micrography (SEM). SEM observations showed that the affinity adsorbent abounded in macropores. Bovine serum albumin (BSA) and lysozyme (Lys) were used as samples to examine the adsorption properties of the adsorbent. Under appropriate conditions, the affinity adsorbent had a capacity of 15.5 mg BSA/g and 22.3 mg Lys/g (wet adsorbent weight). The adsorbed proteins could be desorbed by increasing liquid phase ionic strength or by using a NaOH solution, and the adsorbent could be recycled for protein adsorption.  相似文献   

20.
Agar-based magnetic affinity support for protein adsorption   总被引:1,自引:0,他引:1  
Magnetic colloidal particles were prepared by a coprecipitation method. The particles were composed of nanometer-sized superparamagnetic Fe(3)O(4) particles stabilized by lauric acid. Then, magnetic agar gel beads were produced by a water-in-oil emulsification method using a mixture of agar solution and the magnetic colloidal particles as the aqueous phase. A reactive triazine dye, Cibacron blue 3GA (CB), was coupled to the gel to prepare an agar-based magnetic affinity support (MAS) for protein adsorption. The support showed good magnetic responsiveness in a magnetic field. Bovine serum albumin (BSA) was used as a model protein to test adsorption equilibrium and kinetic behavior of the MAS. The adsorption equilibrium of BSA to the MAS was described by the Langmuir-type isotherm. Adsorption capacity of the MAS for BSA was up to 25 mg/mL at a CB coupling density of 1.6 micromol/mL. The effect of ionic strength on BSA adsorption was complex, exhibiting a maximum capacity at an ionic strength of 0.06 mol/L. The adsorption of BSA to the MAS was also influenced by pH. Uptake rate of BSA to the MAS was analyzed using a pore diffusion model. The pore diffusion coefficient was estimated to be 1.75 x 10(-11) m(2)/s. Finally, recycled use of the MAS demonstrated the stability of the MAS in protein adsorption and magnetic responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号