首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the evolution of metazoan bauplans is linked to understanding the evolution of Hox and ParaHox genes. At the base of metazoan radiation we see in both cases a quite confusing picture yet. Here Cnox-2 is one of the best studied diploblast Hox genes. Homologs of this gene are known from Placozoa and several Cnidaria. In those cases where full length gene sequences, or at least full length homeobox sequences, are available the relationship to Hox genes from triploblastic animals as well as the classification to Hox or ParaHox genes can be controversially discussed. The existing data on possible gene functions also reveal a quite heterogeneous picture. It seems conceivable that part of the "multicolored" picture relates to a "polygenealogical" origin of the Cnox-2 gene.  相似文献   

2.
The correct identification of homologous Hox genes within and between diplo- and triploblastic animals is of crucial importance for recent hypotheses on the anagenetic evolution of animal bauplans. While the homology discussion in general has reached new heights, we apply traditional homology criteria to assign homology to Hox genes from diploblastic animals. Comparison of theTrox-2gene from the presumably most basal metazoan animal, the placozoanTrichoplax adhaerens,to other Hox genes suggests the presence of unambiguous homologs in Hydrozoa and Scyphozoa and the absence of any specific homolog in triploblasts. Furthermore, the comparisons provide support for the idea that Hox genes—at least in diploblastic animals—are composed of functional subunits (modules), which to some degree have undergone independent evolution. The findings are not readily compatible with the existence of the “zootype” in diploblastic animals.  相似文献   

3.
The isolation of Hox genes from two cnidarian groups, the Hydrozoa and Anthozoa, has sparked hypotheses on the early evolution of Hox genes and a conserved role for these genes for defining a main body axis in all metazoan animals. We have isolated the first five Hox genes, Scox-1 to Scox-5, from the third cnidarian class, the Scyphozoa. For all but one gene, we report full-length homeobox plus flanking sequences. Four of the five genes show close relationship to previously reported Cnox-1 genes from Hydrozoa and Anthozoa. One gene, Scox-2, is an unambiguous homologue of Cnox-2 genes known from Hydrozoa, Anthozoa, and also Placozoa. Based on sequence similarity and phylogenetic analyses of the homeobox and homeodomain sequences of known Hox genes from cnidarians, we suggest the presence of at least five distinct Hox gene families in this phylum, and conclude that the last common ancestor of the Recent cnidarian classes likely possessed a set of Hox genes representing three different families, the Cnox-1, Cnox-2, and Cnox-5 families. The data presented are consistent with the idea that multiple duplication events of genes have occurred within one family at the expense of conservation of the original set of genes, which represent the three ancestral Hox gene families.  相似文献   

4.
Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior–posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster ( Brooke et al. 1998 ). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria ( Schubert et al. 1993 ; Zhang and Nei 1996 ). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes ( anthox2 and anthox6 ) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (=Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior–posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria.  相似文献   

5.
The evolution of ANTP genes in the Metazoa has been the subject of conflicting hypotheses derived from full or partial gene sequences and genomic organization in higher animals. Whole genome sequences have recently filled in some crucial gaps for the basal metazoan phyla Cnidaria and Porifera. Here we analyze the complete genome of Trichoplax adhaerens, representing the basal metazoan phylum Placozoa, for its set of ANTP class genes. The Trichoplax genome encodes representatives of Hox/ParaHox-like, NKL, and extended Hox genes. This repertoire possibly mirrors the condition of a hypothetical cnidarian-bilaterian ancestor. The evolution of the cnidarian and bilaterian ANTP gene repertoires can be deduced by a limited number of cis-duplications of NKL and "extended Hox" genes and the presence of a single ancestral "ProtoHox" gene.  相似文献   

6.

Background

Hox genes are expressed in specific domains along the anterior posterior body axis and define the regional identity. In most animals these genes are organized in a single cluster in the genome and the order of the genes in the cluster is correlated with the anterior to posterior expression of the genes in the embryo. The conserved order of the various Hox gene orthologs in the cluster among most bilaterians implies that such a Hox cluster was present in their last common ancestor. Vertebrates are the only metazoans so far that have been shown to contain duplicated Hox clusters, while all other bilaterians seem to possess only a single cluster.

Results

We here show that at least three Hox genes of the spider Cupiennius salei are present as two copies in this spider. In addition to the previously described duplicated Ultrabithorax gene, we here present sequence and expression data of a second Deformed gene, and of two Sex comb reduced genes. In addition, we describe the sequence and expression of the Cupiennius proboscipedia gene. The spider Cupiennius salei is the first chelicerate for which orthologs of all ten classes of arthropod Hox genes have been described. The posterior expression boundary of all anterior Hox genes is at the tagma border of the prosoma and opisthosoma, while the posterior boundary of the posterior Hox genes is at the posterior end of the embryo.

Conclusion

The presence of at least three duplicated Hox genes points to a major duplication event in the lineage to this spider, perhaps even of the complete Hox cluster as has taken place in the lineage to the vertebrates. The combined data of all Cupiennius Hox genes reveal the existence of two distinct posterior expression boundaries that correspond to morphological tagmata boundaries.  相似文献   

7.

Background

Hox and ParaHox gene clusters are thought to have resulted from the duplication of a ProtoHox gene cluster early in metazoan evolution. However, the origin and evolution of the other genes belonging to the extended Hox group of homeobox-containing genes, that is, Mox and Evx, remains obscure. We constructed phylogenetic trees with mouse, amphioxus and Drosophila extended Hox and other related Antennapedia-type homeobox gene sequences and analyzed the linkage data available for such genes.

Results

We claim that neither Mox nor Evx is a Hox or ParaHox gene. We propose a scenario that reconciles phylogeny with linkage data, in which an Evx/Mox ancestor gene linked to a ProtoHox cluster was involved in a segmental tandem duplication event that generated an array of all Hox-like genes, referred to as the 'coupled' cluster. A chromosomal breakage within this cluster explains the current composition of the extended Hox cluster (with Evx, Hox and Mox genes) and the ParaHox cluster.

Conclusions

Most studies dealing with the origin and evolution of Hox and ParaHox clusters have not included the Hox-related genes Mox and Evx. Our phylogenetic analyses and the available linkage data in mammalian genomes support an evolutionary scenario in which an ancestor of Evx and Mox was linked to the ProtoHox cluster, and that a tandem duplication of a large genomic region early in metazoan evolution generated the Hox and ParaHox clusters, plus the cluster-neighbors Evx and Mox. The large 'coupled' Hox-like cluster EvxHox/MoxParaHox was subsequently broken, thus grouping the Mox and Evx genes to the Hox clusters, and isolating the ParaHox cluster.
  相似文献   

8.
The Hox gene cluster has been a key paradigm for a generation of developmental and evolutionary biologists. Since its discovery in the mid-1980's, the identification, genomic organization, expression, colinearity, and regulation of Hox genes have been immediate targets for study in any new model organism, and metazoan genome projects always refer to the structure of the particular Hox cluster(s). Since the early 1990's, it has been dogma that vertebrate Hox clusters are composed of thirteen paralogous groups. Nonetheless, we showed that in the otherwise prototypical cephalochordate amphioxus (Branchiostoma floridae), the Hox cluster contains a fourteenth Hox gene, and very recently, a 14(th) Hox paralogous group has been found in the coelacanth and the horn shark, suggesting that the amphioxus cluster was anticipating the finding of Hox 14 in some vertebrate lineages. In view of the pivotal place that amphioxus occupies in vertebrate evolution, we thought it of considerable interest to establish the limits of its Hox gene cluster, namely resolution of whether more Hox genes are present in the amphioxus cluster (e.g., Hox 15). Using two strategies, here we report the completion and characterization of the Hox gene content of the single amphioxus Hox cluster, which encompasses 650 kb from Hox1 to Evx. Our data have important implications for the primordial Hox gene cluster of chordates: the prototypical nature of the single amphioxus Hox cluster makes it unlikely that additional paralogous groups will be found in any chordate lineage. We suggest that 14 is the end.  相似文献   

9.
Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.  相似文献   

10.
Molecular evidence suggests that Acoelomorpha, a proposed phylum composed of acoel and Nemertodermatida flatworms, are the most basal bilaterian animals. Hox and ParaHox gene complements characterised so far in acoels consist of a small set of genes, comprising representatives of anterior, central and posterior genes, altogether Hox and ParaHox, but no PG3-Xlox representatives have been reported. It has been proposed that this might be the ancestral Hox repertoire in basal bilaterians. However, no studies of the other members of the group, the Nemertodermatida, have been done. In order to get a more complete picture of the basal bilaterian Hox and ParaHox complement, we have analysed the Hox/ParaHox complement of the nemertodermatid Nemertoderma westbladi. We have found representatives of two central and one posterior Hox genes, as well as an Xlox and a Caudal ParaHox gene. From our data we conclude that a PG3-Xlox gene was present in the ancestor of bilaterians. These findings support the speculation that basal bilaterians already had the beginnings of the extended central Hox set, driving back gene duplications in the central part of the Hox cluster deeper in phylogeny than previously suggested.  相似文献   

11.
Ogishima S  Tanaka H 《Gene》2007,387(1-2):21-30
Hox cluster has key roles in regulating the patterning of the antero-posterior axis in a metazoan embryo. It consists of the anterior, central and posterior genes; the central genes have been identified only in bilaterians, but not in cnidarians, and are responsible for archiving morphological complexity in bilaterian development. However, their evolutionary history has not been revealed, that is, there has been a "missing link". Here we show the evolutionary history of Hox clusters of 18 bilaterians and 2 cnidarians by using a new method, "motif-based reconstruction", examining the gain/loss processes of evolutionarily conserved sequences, "motifs", outside the homeodomain. We successfully identified the missing link in the evolution of Hox clusters between the cnidarian-bilaterian ancestor and the bilaterians as the ancestor of the central genes, which we call the proto-central gene. Exploring the correspondent gene with the proto-central gene, we found that one of the acoela Hox genes has the same motif repertory as that of the proto-central gene. This interesting finding suggests that the acoela Hox cluster corresponds with the missing link in the evolution of the Hox cluster between the cnidarian-bilaterian ancestor and the bilaterians. Our findings suggested that motif gains/diversifications led to the explosive diversity of the bilaterian body plan.  相似文献   

12.
Evolution of the echinoderm Hox gene cluster   总被引:1,自引:0,他引:1  
SUMMARY Extant echinoderms are members of an ancient and highly derived deuterostome phylum. The composition and arrangement of their Hox gene clusters are consequently of interest not only from the perspective of evolution of development, but also in terms of metazoan phylogeny and body plan evolution. Over the last decade numerous workers have reported partial Hox gene sequences from a variety of echinoderms. In this paper we used a combined methods approach to analyze phylogenetic relationships between 68 echinoderm Hox homeodomain fragments, from species of five extant classes—two asteroids, one crinoid, one ophiuroid, one holothuroid, and three echinoids. This analysis strengthens Mito and Endo's (2000) proposition that the ancestral echinoderm's Hox gene cluster contained at least eleven genes, including at least four posterior paralogous group genes. However, representatives of all paralogous groups are not known from all echinoderm classes. In particular, these data suggest that echinoids may have lost a posterior group Hox gene subsequent to the divergence of the echinoderm classes. Evolution of the highly derived echinoderm body plan may have been accompanied by class-specific duplication, diversification and loss of Hox genes.  相似文献   

13.
We present an hypothesis, derived from the zootype concept of Slack, Holland and Graham. The main point of this hypothesis is to postulate that the primordial function of the zootype genes is to design an appropriate neuronal network in bilaterian animals, by controlling the genes involved in the specificity of the axon pathways. This would be the primary function of the zootype genes in development and their primitive function in evolution. The hypothesis is discussed in view of the current knowledge on the Hox genes, their evolution, their genomic organisation, their expression and their targets.  相似文献   

14.
15.
Several molecular data sets suggest that acoelomorph flatworms are not members of the phylum Platyhelminthes but form a separate branch of the Metazoa that diverged from all other bilaterian animals before the separation of protostomes and deuterostomes. Here we examine the Hox gene complement of the acoel flatworms. In two distantly related acoel taxa, we identify only three distinct classes of Hox gene: an anterior gene, a posterior gene, and a central class gene most similar to genes of Hox classes 4 and 5 in other Bilateria. Phylogenetic analysis of these genes, together with the acoel caudal homologue, supports the basal position of the acoels. The similar gene sets found in two distantly related acoels suggest that this reduced gene complement may be ancestral in the acoels and that the acoels may have diverged from other bilaterians before elaboration of the 8- to 10-gene Hox cluster that characterizes most bilaterians.  相似文献   

16.
We report the nucleotide sequence of the core histone gene cluster from the Cnidarian Acropora formosa. This is the first histone gene cluster to be sequenced from a diploblastic organism and the predicted amino acid sequences most resemble those of sea urchin equivalents. Each of the Cnidarian histone genes has two conserved regions 3 of the coding sequences and these closely resemble those of the metazoan a-class histone genes. In A. formosa the core histone genes are arranged as opposed (H3/H4 and H2A/H2B) pairs, a pattern common to the nondeuterostome metazoa, and tandem repetition is the predominant pattern of organization in the Cnidarian. With the recent identification of several classes of homeobox genes in Cnidarians these features clearly align the Cnidaria with triploblastic metazoans, supporting a monophyletic origin of the metazoa.  相似文献   

17.
18.

Background

Hox genes are key elements in patterning animal development. They are renowned for their, often, clustered organisation in the genome, with supposed mechanistic links between the organisation of the genes and their expression. The widespread distribution and comparable functions of Hox genes across the animals has led to them being a major study system for comparing the molecular bases for construction and divergence of animal morphologies. Echinoderms (including sea urchins, sea stars, sea cucumbers, feather stars and brittle stars) possess one of the most unusual body plans in the animal kingdom with pronounced pentameral symmetry in the adults. Consequently, much interest has focused on their development, evolution and the role of the Hox genes in these processes. In this context, the organisation of echinoderm Hox gene clusters is distinctive. Within the classificatory system of Duboule, echinoderms constitute one of the clearest examples of Disorganized (D) clusters (i.e. intact clusters but with a gene order or orientation rearranged relative to the ancestral state).

Results

Here we describe two Hox genes (Hox11/13d and e) that have been overlooked in most previous work and have not been considered in reconstructions of echinoderm Hox complements and cluster organisation. The two genes are related to Posterior Hox genes and are present in all classes of echinoderm. Importantly, they do not reside in the Hox cluster of any species for which genomic linkage data is available.

Conclusion

Incorporating the two neglected Posterior Hox genes into assessments of echinoderm Hox gene complements and organisation shows that these animals in fact have Split (S) Hox clusters rather than simply Disorganized (D) clusters within the Duboule classification scheme. This then has implications for how these genes are likely regulated, with them no longer covered by any potential long-range Hox cluster-wide, or multigenic sub-cluster, regulatory mechanisms.
  相似文献   

19.
李慧  花保祯 《动物学杂志》2011,46(1):136-142
Hox基因是生物体内一类重要的发育调控基因家族.Hox基因高度保守,通常成簇存在,编码一类转录因子,在个体胚胎发育中起着重要的调控作用.近期研究表明,基因复制、基因序列变异及选择压力对Hox基因簇的产生和进化有重要作用,同时调节元件和协同进化对Hox基因的进化也有重要影响.  相似文献   

20.
The rise and fall of Hox gene clusters   总被引:9,自引:0,他引:9  
Although all bilaterian animals have a related set of Hox genes, the genomic organization of this gene complement comes in different flavors. In some unrelated species, Hox genes are clustered; in others, they are not. This indicates that the bilaterian ancestor had a clustered Hox gene family and that, subsequently, this genomic organization was either maintained or lost. Remarkably, the tightest organization is found in vertebrates, raising the embarrassingly finalistic possibility that vertebrates have maintained best this ancestral configuration. Alternatively, could they have co-evolved with an increased ;organization' of the Hox clusters, possibly linked to their genomic amplification, which would be at odds with our current perception of evolutionary mechanisms? When discussing the why's and how's of Hox gene clustering, we need to account for three points: the mechanisms of cluster evolution; the underlying biological constraints; and the developmental modes of the animals under consideration. By integrating these parameters, general conclusions emerge that can help solve the aforementioned dilemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号