首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the stage 4 chick blastoderm, an area located 0.6 mm posterior to Hensen's node, the post-nodal piece (PNP), consists of an undifferentiated population of cells, since the explants when cultivated in vitro in a variety of media do not develop into any histologically identifiable structures. However, addition of a specific low molecular weight RNA isolated from the 16-day-old chick embryonic heart promotes the appearance of a distinct mode of morphological and biochemical changes that is similar to that of embryonic cardiogenic process. The RNA-induced changes in the PNP also include a marked increase in acetylcholinesterase activity. The increase in enzymatic activity can be measured biochemically, as well as visualized histochemically.  相似文献   

2.
In the stage 4 chick blastoderm, an area located 0.6 mm posterior to Hensen's node, the post-nodal piece (PNP), consists of an undifferentiated population of cells, since the explants when cultivated in vitro in a variety of media do not develop into any histologically identifiable structures. However, addition of a specific low molecular weight RNA isolated from the 16-day-old chick embryonic heart promotes the appearance of a distinct mode of morphological and biochemical changes that is similar to that of embryonic cardiogenic process. The RNA-induced changes in the PNP also include a marked increase in acetylcholinesterase activity. The increase in enzymatic activity can be measured biochemically, as well as visualized histochemically.  相似文献   

3.
(1) Cultures of differentiated muscle cells have been grown from diseased human, mouse and chick skeletal muscle, and from cardiac muscle of the myopathic hamster. (2) Methods of culture established for normal embryonic and adult skeletal muscle cells have proved suitable for cultures of diseased muscle cells. (3) Myoblasts obtained from dy2J mouse muscle crushed in vivo before explanting fuse in culture and form morphologically normal myotubes. Studies of the effects of innervation by dy2J spinal cord neurones on the differentiation of normal, dy2J and dy myotubes have been inconclusive but it is probable that innervation does not play a part in the pathogenesis of this disorder. (4) Myoblasts prepared by trypsinization of embryonic dy muscle behave normally in culture and fuse to form myotubes that appear normal. It is not clear if myoblasts that migrate from explants of adult muscle in vitro fuse. Aggregates of non-fusing cells have been described, but under other culture conditions normal and abnormal forms of myotube have been observed. dy muscle fibres fail to regenerate even when cultured with normal spinal cord explants and dy nerves are without effect on regenerating normal muscle fibres. These tissue-culture studies suggest that the dy mouse mutation is a myopathic disorder. (5) Embryonic mdg myoblasts have a normal cell cycle in vitro and fuse to form well-differentiated myotubes with cross-striations. mdg myotubes have normal electro-physiological properties but do not contract spontaneously or on depolarization. The defect in the muscle of the mdg mutant appears to be a failure of excitation-contraction coupling. (6) Cells migrate earlier from explants of adult dystrophic chick muscle than from normal muscle but dystrophic chick myotubes appear morphologically normal. Myotubes prepared from embryonic dystrophic chick muscle become vacuolated and degenerate, changes that can be prevented by anti-proteases such as antipain. Lactic dehydrogenase isozyme subunit M4 is absent from dystrophic muscle in vivo but reappears in cultured myotubes. Dystrophic myotubes innervated in culture by either normal or dystrophic neurones exhibit bi-directional lcoupling and multiple innervation. These results suggest that there are changes in dystrophic myotubes and that chick muscular dystrophy is a myopathy. (7) Cardiac muscle cells from the cardiomyopathic hamster synthesize less actin and myosin than normal cells, and Z lines in dystrophic cells are irregularly arranged. The beat frequency of myopathic cardiac cells is lower than that of normal cells and declines more rapidly. Tissue-culture studies have not been made of hamster skeletal muscle. (8) Human dystrophic myotubes do not show degenerative changes in culture and have normal histochemical reactions. RNA synthesis appears normal in dystrophic myotubes but there may be changes in adenyl-cyclase activity and protein synthesis in dystrophic cells. Morphological and biochemical changes have been found in muscle cells cultured from a case of acid-maltase deficiency but phosphorylase activity re-appeared in myotubes cultured from biopsies of phosphorylase-deficient muscle. Innervation by normal mouse nerves does not induce degenerative changes in dystrophic myotubes. (9) Studies on the origins of myoblasts in explants of muscle fibres in culture suggest that in these conditions myoblasts are derived only from satellite cells and that this process may be the same in normal and diseased muscle.  相似文献   

4.
A recombinant DNA plasmid, pMHC8, that contains gene sequences for embryonic chick cardiac myosin heavy chain was constructed, identified and characterized. The identity of the clone was established by hybridization with labeled probes that afford screening of MHC22 with high specificity, by inhibition of MHC synthesis in the in vitro hybrid-arrested translation assay, and by tissue-specific hybridization of labeled pMHC8 DNA to MHC messenger RNA.The pMHC8 DNA probe is highly specific for chick heart muscle tissue, since it hybridized poorly to chick skeletal muscle RNA and did not detectably hybridize to adult rat heart RNA. Upon screening the embryonic chick heart cells in culture, no detectable level of MHC mRNA was observed in dividing myoblasts, but the mRNA appeared in differentiated cardiac myocytes paralleling morphogenetic changes in the embryonic cells.  相似文献   

5.
A water-soluble fraction of a 4 M guanidine HCl extract of demineralized adult bovine bone stimulated the differentiation of cartilage in explants of minced skeletal muscle from embryonic chick legs; cartilage was also induced by a semipurified protein preparation. Cartilage could be identified in treated cultures at 1 week with muscle from day-9 embryos, not before 2 weeks with muscle from day-12 embryos, and not before 3 weeks with muscle from day-19 embryos. The ability to respond to this water-soluble fraction by exhibiting cartilage differentiation was dose-dependent, but not confined to any particular muscle region of the day-12 embryonic leg. These observations indicate that bone-derived soluble chondroinductive agents act on cells in minced embryonic muscle preparations. The induction of cartilage is dependent upon the accessibility of the responding cells to the agents, on the concentration of inductive agents, and on the developmental age of the responsive tissue.  相似文献   

6.
The chick skeletal muscle nitric oxide synthase (NOS) gene was cloned in order to further define the involvement of NOS in the differentiation of skeletal muscle cells. The respective cDNA had an open reading frame of 1136 amino acid residues, predicting a protein of 129,709.85 Da, and recognition sites for FAD, FMN, NADPH, and a calmodulin-binding site like those of other mammalian NOS's. Alignment of the deduced amino acid sequence revealed high homology with mammalian inducible NOS (iNOS), but not other NOS isoforms, suggesting chick skeletal muscle NOS may be an iNOS isoform. Immunoblots showed that NOS expression was highly restricted in embryonic muscle, but not in adult skeletal muscle: NOS expression markedly increased from embryonic day 9, reached a maximum by embryonic day 13, and then gradually declined until it was no longer detectable on embryonic day 19. When muscle cells obtained on embryonic day 12 were cultured, NOS expression increased transiently prior to the onset of differentiation and decreased thereafter. Inhibition of NOS expression by PDTC completely prevented muscle cell differentiation, as indicated by the inhibition of expression of myosin heavy chain and creatine kinase. The inhibitory effect of PDTC was completely reversed by addition of sodium nitroprusside, a compound that produces NO. These results clearly indicate that NOS is significantly involved in the differentiation of chick skeletal muscle cells.  相似文献   

7.
Two recombinant plasmids containing structural gene sequences of chick embryonic heart glyceraldehyde-3-phosphate dehydrogenase (GAP dehydrogenase) were constructed and characterized. The plasmids pGAP 30 and pGAP 36 have inserts of 1200 and 950 base pairs, respectively. The identity of the clones was established by hybrid-arrested and hybrid-selection translation assays, and by immunoprecipitation of hybrid-selected translation product with GaP dehydrogenase antiserum. Hybridization of labeled pGAP 30 DNA to size-fractionated chick heart poly(A) RNA occurred at the region on the gel corresponding to the mobility of GAP dehydrogenase mRNA. Base sequence analysis of plasmid pGAP 30 and the comparison of the amino acid sequence derived from it with that of pig muscle GAP dehydrogenase revealed that the amino acid sequence of GAP dehydrogenase is strictly conserved between the chick and pig muscle tissues. Expression of GAP dehydrogenase mRNA in developing chick heart cells in cultures was monitored by in situ hybridization. The GAP dehydrogenase mRNA was present in 5-h-old dividing myoblasts, in contrast to mRNAs specific for contractile proteins, which appear late in myoblast development paralleling morphogenetic differentiation of myoblasts into myocytes (Jakowlew, S. B., Khandekar, P., Datta, K., Narula, S. K., Arnold, H. H., and Siddiqui, M. A. Q. (1982) J. Mol. Biol. 156, 673-682).  相似文献   

8.
The effects of embryonic heart RNA extracted from 18-day chick embryos were studied both on the isolated parts of the chick blastoderm and on the isolated primitive tubular heart of the early chick embryo. The embryonic heart RNA accelerated in vitro the beating of the heart-forming area and the pulsing of the primordial heart organ. In addition, a phenomenon of cardiac transformation was observed.  相似文献   

9.
Xenogeneic antisera raised in rabbits have been used to detect compositional changes at the cell surfaces of differentiating embryonic chick skeletal muscle. In this report, we present the serological characterization of antiserum (Anti-M-24) against muscle tissue and developmental stage-specific cell surface antigens of the prefusion myoblast. Cells from primary cultures of 12-d-old embryonic chick hindlimb muscle were injected into rabbits, and the resulting antisera were selectively absorbed to obtain immunological specificity. Cytotoxicity and immunohistochemical assays were used to test this antiserum. Absorption with embryonic or adult chick heart, brain, retina, liver, erythrocytes, or skeletal muscle fibroblasts failed to remove all reactivity of Anti-M-24 for myogenic cells at all stages of development. After absorption with embryonic myotubes, however, Anti-M-24 no longer reacted with differentiated myofibers, but did react with prefusion myoblasts. The myoblast surface antigens detected with Anti-M-24 are components of the muscle cell membrane: (a) these macromolecules are free to diffuse laterally within the myoblast membrane; (b) Anti-M-24, in the presence of complement, induced lysis of the muscle cell membrane; and (c) intact monolayers of viable myoblasts completely absorbed reactivity of Anti-M-24 for myoblasts. These antigens are not loosely adsorbed culture medium components or an artifact of tissue culture because: (a) absorption of Anti-M-24 with homogenized embryonic muscle removed all antibodies to cultured myoblasts; (b) Anti-M-24 reacted with myoblast surfaces in vivo; and (c) absorption of Anti-M-24 with culture media did not affect the titer of this antiserum for myoblasts. We conclude that myogenic cells at all stages of development possess externally exposed antigens which are undetected on other embryonic and adult chick tissues. In addition, myoblasts exhibit surface antigenic determinants that are either masked, absent, or present in very low concentrations on skeletal muscle fibroblasts, embryonic myotubes, or adult myofibers. These antigens are free to diffuse laterally within the myoblast membrane and may be modulated in response to appropriate environmental cues during myodifferentiation.  相似文献   

10.
The formation of neural retina (NR) from retinal pigmented epithelium (RPE) of chick embryos in culture was investigated. In cultures of explants of PRE, depigmented, preretinal foci, consisting of 50 to 100 cells appeared in the pigmented central portion of the explant within three days. Then these depigmented cells increased rapidly in number and by about day 14 they formed characteristic spherical bodies, which were identified as a neural retinal-like structure (NR structure) by electron microscopic observations. Culture of explants of RPE from embryos of different stages showed that the capacity of embryonic RPE to form an NR structure decreased steadily with embryonic age from st. 24 to 27. At and after stage 27, no foci leading to the neural retinal differentiation were formed in the explants. Medium conditioned by cell cultures of chicken embryonic NR, RPE or chondrocytes had no effect on the formation of NR structures by explants of RPE.  相似文献   

11.
β‐Adrenergic signaling regulates many physiological processes in skeletal muscles. A wealth of evidence has shown that β‐agonists can increase skeletal muscle mass in vertebrates. Nevertheless, to date, the specific role of β‐adrenergic receptors in different cell phenotypes (myoblasts, fibroblasts, and myotubes) and during the different steps of embryonic skeletal muscle differentiation has not been studied. Therefore, here we address this question through the analysis of embryonic chick primary cultures of skeletal muscle cells during the formation of multinucleated myotubes. We used isoproterenol (ISO), a β‐adrenergic receptor agonist, to activate the β‐adrenergic signaling and quantified several aspects of muscle differentiation. ISO induced an increase in myoblast proliferation, in the percentage of Pax7‐positive myoblasts and in the size of skeletal muscle fibers, suggesting that ISO activates a hyperplasic and hypertrophic muscle response. Interestingly, treatment with ISO did not alter the number of fibroblast cells, suggesting that ISO effects are specific to muscle cells in the case of chick myogenic cell culture. We also show that rapamycin, an inhibitor of the mammalian target of rapamycin signaling pathway, did not prevent the effects of ISO on chick muscle fiber size. The collection of these results provides new insights into the role of β‐adrenergic signaling during skeletal muscle proliferation and differentiation and specifically in the regulation of skeletal muscle hyperplasia and hypertrophy.  相似文献   

12.
The ability of embryonic chick heart to elicit neuritic outgrowth in different ganglia was tested to examine (1) whether stimulative activity is possessed by the heart only at specific stages and (2) whether the ability of the ganglionic neurons to respond is limited to certain periods of development. As an assay, ganglia were explanted into thin collagen gels with ventricular tissue placed at a distance of about 1 mm. Neuritic outgrowth was measured after 2 days. Control ganglia and ganglia cultured with added nerve growth factor (NGF) were also scored. Four types of tested ganglia, including the ciliary ganglion, showed a peak in neuritic outgrowth when cultured with heart of embryonic Day 18, at about which age the heart becomes sympathetically innervated in ovo. No age-related size differences that could account for this temporal pattern were found among the heart explants when measuring their protein content. A peak in neuronal susceptibility to heart tissue was evident in the 6-day ciliary ganglion and in the 8-day paravertebral, Remak, and spinal ganglia, roughly coinciding with the onset of fibre outgrowth in ovo. Neurite extension is concluded to have been triggered by a factor spread from the heart explants and being distinct from the mouse type of NGF since anti-NGF did not at any stage block the events and since added NGF at all stages failed to evoke neurite formation in the ciliary ganglia. A testable hypothesis is that this factor regulates the growth of sympathetic and possibly parasympathetic and sensory fibres in the developing chick heart.  相似文献   

13.
The messenger RNA (mRNA) coding for myosin heavy chain from the 16-day-old chick embryonic cardiac tissue was purified by a rapid isolation procedure and characterized. The mRNA can be translated with fidelity under optimally chosen conditions. The protein synthesized in response to the RNA was a polypeptide of 200,000 molecular weight, identical to the authentic myosin heavy chain from the homologous chick heart tissue. The purity of the mRNA was assessed by electrophoresis in denaturing gels, by immunoprecipitation of the translation product, and by analysis of the kinetics of hybridization with the complementary DNA (cDNA). The cDNA reassociated with myosin heavy-chain mRNA with kinetics characteristic of a pure mRNA. The sequence complexity data indicated that in the 16-day-old chick embryonic heart cells there is a single mRNA sequence coding for myosin heavy chain in contrast to two different mRNA sequences reportedly present in the skeletal muscle cells (M. Patrinou-Georgoulas and H. A. John, 1977, Cell12, 491).  相似文献   

14.
The activity of the plasma membrane enzyme 5′-nucleotidase varies dramatically during the embryonic development of chick pectoral muscle. The specific activity is greatest at early stages of differentiation (8-day embryos), falls to a minimum on days 12–14, then rises again in older embryos. In cultured muscle cells obtained from embryonic chick muscle the 5′-nucleotidase activity is essentially absent. Muscle cells grown in the presence of bromodeoxyuridine, an inhibitor of muscle differentiation, contain enhanced levels of 5′-nucleotidase activity. These results indicate that 5′-nucleotidase may be absent in muscle fibers, but present in other cells of muscle tissue.  相似文献   

15.
In the present study we investigated the changes of plasma lipids, lipoproteins, and tissue lipids that occur during the late embryonic life (5 days before hatching) and the postnatal period (0, 2, 7, 14, and 30 days after hatching) of the chick. The chick emerges from the egg with extreme hypercholesterolemia associated with a high level of cholesterol-rich VLDL + IDL. The density gradient profile of plasma lipoproteins showed that the concentrations of VLDL + IDL and LDL decreased during the first week of postnatal life, whereas HDL concentration increased sharply around hatching and remained stable afterwards. All plasma lipoprotein classes of the newborn chick (2 days from hatching) were enriched in cholesterol and cholesteryl esters; 2 weeks after hatching, the relative amount of cholesterol and cholesteryl esters decreased. In the newborn chick, plasma VLDL + IDL consisted of two populations of cholesteryl ester-rich lipoproteins: the main one (designated apoB-VLDL) contained apoB and no apoA-I; the other (designated apoA-I-VLDL) contained predominantly apoA-I. In the newborn chick there was an accumulation of free and esterified cholesterol in the liver and, to a lesser extent, in the skeletal muscle. These cholesterol deposits were depleted 2 to 7 days after hatching. The depletion in skeletal muscle was preceded by and associated with a striking increase in the synthesis of apoA-I in this tissue, as demonstrated by immunological methods and apoA-I mRNA measurements. In addition, apoA-I-containing HDL were secreted in vitro by explants of skeletal muscle of the newborn chick. The synthesis of apoA-I in the skeletal muscle decreased to the level found in the adult animal 1 week after hatching. It is likely that the rise of HDL and apoA-I in plasma observed 1-2 days after hatching reflects the production of apoA-I-containing HDL by skeletal muscle. We suggest that the cholesterol overload in skeletal muscle might stimulate the production of apoA-I which, in turn, would promote the removal of cholesterol from this tissue. The hypothesis that metabolic stimuli play a role in inducing apoA-I synthesis in skeletal muscle is supported by the observation that feeding the newborn chick a diet rich in proteins and lipids and free of carbohydrates delays the fall of apoA-I mRNA which normally occurs 1 week after hatching.  相似文献   

16.
Electrogenesis of embryonic chick skeletal muscle cells differentiated in monolayer cultures was investigated. Muscle fibers in vitro generate spike potentials similar to those of fibers in vivo. However, other responses, plateaux resembling those in heart muscle, are also elicited. These results suggest that a functional differentiation exists in cultured muscle fibers.  相似文献   

17.
The embryonic vertebrate heart consists of two epithelia: the myocardium and endothelium, separated by the myocardial basement membrane (MBM). The myocardium has been shown to induce endothelial transformation into prevalvular mesenchyme in a temporally and site restricted manner. Previously, we hypothesized that the myocardial-endothelial interaction is mediated in vivo by aggregates of 30-nm particles in the MBM which can be removed by EDTA extraction. These MBM extracts contain fibronectin and other lower Mr proteins and can initiate an epithelial-mesenchymal transition in the AV (atrioventricular canal) endothelium of embryonic chick heart in collagen gel culture. These and other data suggested that the 30-nm multicomponent particles are similar, structurally and compositionally, to multimolecular complexes, termed adherons, secreted by L6 muscle cells in culture. The purpose of this study was to (1) test whether the removal of the 30-nm particles from MBM extracts of embryonic chick hearts would remove the in vitro biological activity and (2) determine if the fractionated MBM extracts can cause AV endothelial cells to follow the same differentiation pathway observed in vivo by monitoring immunohistochemically the cell surface expression of N-CAM. Results showed that centrifugation of extract at 100,000g for 1 hr produced a supernatant fraction that was unable to initiate mesenchyme formation from AV endothelium. However, the resuspended pellet fraction did initiate differentiation of endothelium into mesenchyme. Conditioned medium from L6 skeletal muscle cultures could not substitute for the EDTA extract of embryonic heart. Endothelial cells undergoing the transition to form mesenchyme, both in vivo and in vitro, showed a concomitant decrease in N-CAM staining. This suggested that the pellet-induced formation of migrating cells in the collagen gels is not the result a novel in vitro phenomenon.  相似文献   

18.
19.
Accumulation of amylase by pancreas explants from chick embryos of 7 to 14 days of development was studied in organ culture. The explants produced amylase but there was no increase in their total DNA and little if any increase in their total protein. Most of the amylase in the cultures was released into the culture medium. The lower the developmental age at which the pancreas was taken, the greater was the relative increase of amylase activity in the culture. After several days of culture the accumulation of amylase slowed or stopped. Hydrocortisone markedly increased the amount of amylase produced by the explants. The hormone had little or no effect on the initial rate of accumulation of amylase by the explants. However, addition of hydrocortisone to the culture resulted in a continuing increase of amylase activity when accumulation of the enzyme had ceased in the controls without added hormone. The observations support the hypothesis, suggested earlier, that corticosteroid hormones are implicated in the later stages of differentiation of the embryonic chick pancreas.  相似文献   

20.
A strain of axolotl, Ambystoma mexicanum, that carries the cardiac lethal or c gene presents an excellent model system in which to study inductive interactions during heart development. Embryos homozygous for gene c contain hearts that fail to beat and do not form sarcomeric myofibrils even though muscle proteins are present. Although they can survive for approximately three weeks, mutant embryos inevitably die due to lack of circulation. Embryonic axolotl hearts can be maintained easily in organ culture using only Holtfreter's solution as a culture medium. Mutant hearts can be induced to differentiate in vitro into functional cardiac muscle containing sarcomeric myofibrils by coculturing the mutant heart tube with anterior endoderm from a normal embryo. The induction of muscle differentiation can also be mediated through organ culture of mutant heart tubes in medium 'conditioned' by normal anterior endoderm. Ribonuclease was shown to abolish the ability of endoderm-conditioned medium to induce cardiac muscle differentiation. The addition of RNA extracted from normal early embryonic anterior endoderm to organ cultures of mutant hearts stimulated the differentiation of these tissues into contractile cardiac muscle containing well-organized sarcomeric myofibrils, while RNA extracted from early embryonic liver or neural tube did not induce either muscular contraction or myofibrillogenesis. Thus, RNA from anterior endoderm of normal embryos induces myofibrillogenesis and the development of contractile activity in mutant hearts, thereby correcting the genetic defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号