首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Capn5 gene was inactivated by homologous recombination in ES cells that subsequently colonized the germ line of mice. The targeted mutation integrated a lacZ expression cassette into the Capn5 gene, allowing the expression of Capn5 mRNA to be examined in detail in heterozygous animals. Expression was observed in embryonic and newborn thymuses, in various epithelial tissues, and in tissues of the central nervous system. In the thymus, Capn5 was expressed mainly in relatively immature CD25(+) embryonic thymocytes. Despite the numerous expression sites of Capn5, the majority of Capn5-null mice were viable and fertile and appeared healthy. Histopathological analysis did not reveal any differences between Capn5-null and wild-type mice. There were no defects in the major T- or B-cell populations in the thymus, spleen, bone marrow, or peritoneum, nor did apoptosis appear abnormal in Capn5-null T cells. There was no evidence for the development of autoimmune disease in Capn5-null animals. However, a small proportion of homozygous null offspring from heterozygous matings were runted and most often did not survive to adulthood.  相似文献   

2.

Background

Calpain small subunit 1 (Capn4) has been shown to correlate with the metastasis/invasion of hepatocellular carcinoma. This study aimed to investigate the role of Capn4 in intrahepatic cholangiocarcinoma (ICC).

Methods

Capn4 expression was measured in 33 ICC tissues by quantitative real-time polymerase chain reaction and western blot. The role of Capn4 in the migration, invasion and proliferation of ICC cells and matrix metalloproteinase 2 (MMP2) expression were assessed after Capn4 depletion by specific small interfering RNA. Capn4 expression was further examined by immunohistochemistry in a tissue microarray consisting of 140 ICC patients and 13 normal liver tissues, and the prognostic role of Capn4 in ICC was evaluated by Kaplan-Meier and Cox regression analyses.

Results

Capn4 expression was significantly higher in the ICC tissues compared to the peritumor tissues. Capn4 down-regulation impaired the migration/invasion ability of HCCC-9810 and QBC939 cells in vitro and decreased MMP2 expression. Capn4 overexpression significantly correlated with the presence of lymphatic metastasis of ICC (p = 0.026) and the tumor-node-metastasis (TNM) stage (p = 0.009). The postoperative 2- and 5-year overall survivals in patients with Capn4low were higher than those in the Capn4high group. The cumulative recurrence rate in patients with Capn4low was much lower than in the Capn4high group. Multivariate analysis showed that Capn4 overexpression was an independent prognostic marker in ICC.

Conclusions

Capn4 overexpression was implicated in ICC metastasis/invasion, and Capn4 overexpression may be used as a molecular therapeutic target for ICC.  相似文献   

3.
Calpains are calcium regulated proteases involved in cellular functions that include muscle proteolysis both ante- and postmortem. Here, we describe the molecular characterization of the rainbow trout catalytic subunits of the mu- and m-calpains, respectively. The cDNA sequence for Capn1 encodes a protein of 704 amino acids with a calculated molecular mass of 79.9 kDa. The amino acid sequence shows 66% and 86% identity with the mouse and zebrafish Capn1, respectively. The Capn2 cDNA codes for a protein consisting of 701 amino acid residues with a calculated molecular mass of 78.2 kDa. The protein shows 65% amino acid sequence identity with the mouse and chicken Capn2. The two isozymes of rainbow trout have the characteristic domains: I (propeptide), II (cysteine catalytic site), III (electrostatic switch), and IV (contains five EF-hands). Because starvation induces muscle wasting, the hypothesis of this study was that starvation could affect regulation of the calpain system in muscle. Starvation of rainbow trout fingerlings (15-20 g) for 35 days stimulated the expression of Capn1 (2.2-fold increase, P < 0.01), Capn2 (6.0-fold increase, P < 0.01), and calpastatins (1.6-fold increase, P < 0.05) as measured by quantitative real-time RT-PCR. The mRNA changes led to a 1.23-fold increase in the calpain catalytic activity. The results suggest a potential role of calpains in protein mobilization as a source of energy under fasting condition.  相似文献   

4.
The rat strain Otsuka Long-Evans Tokushima Fatty (OLETF) is an animal model for type 2 diabetes mellitus. Nidd8/of has been identified as one of 14 quantitative trait loci (QTLs) involved in the diabetes by a whole genome search in 160 F2 progenies obtained by mating the OLETF and F344 rats. Comparative mapping between human and rat indicated that the Nidd8/of genomic region, near D9rat21 on rat chromosome 9, contains the calpain10 (Capn10) gene, which is putative type 2 diabetes-susceptibility gene in humans. In this study, we found no difference in Capn10 mRNA expression in the heart, liver, skeletal muscle and pancreas between OLETF and F344 rats at 5 and 10 weeks of age. However, we found a single nucleotide polymorphism (SNP) (A/A genotype in OLETF and G/G genotype in F344 and LETO rats) at the base 583 downstream from the translation start site in the rat Capn10 cDNA sequence. This SNP was deduced to substitute serine (OLETF) for glycine (F344 and LETO) at the 195 amino acid residue within the protease domain of rat Capn10. Because serine is generally not interchangeable with glycine in respect of the protein structure and function, it was deduced that the A/A genotype in OLETF is not a 'safe' mutation. This non-conservative amino acid substitution might be associated with susceptibility to type 2 diabetes in OLETF rats.  相似文献   

5.
The purpose of the present investigation was to compare the expression of ubiquitous and tissue-specific calpains in ocular tissues from the Macaca fascicularis monkey. Calpain isoforms in retina and corneal epithelium from adult M. fascicularis monkeys were characterized by RT-PCR, cDNA cloning and sequencing. Calpain isoform activities in ocular tissues were investigated by fractionation on DEAE-HPLC, immunoblotting, and casein zymography. Capn3 splice variants in the ocular tissues from rat, rabbit and monkey were compared after RT-PCR. RT-PCR analysis revealed that numerous splice variants of Capn3 were expressed in the epithelium from monkey cornea. The variants contained deletions or insertions in or around the IS1, IS2, and NS regions. The cDNAs for Capn3 variants were highly conserved, yet the expression patterns of the Capn3 isoforms were widely different among the mammalian species. In contrast, the expression patterns of ubiquitous calpains in ocular tissues were conserved among the mammalian species, and similarities between monkey and human cDNAs for Capn1 (mu-calpain) and Capn2 (m-calpain) were 98 and 99%, respectively. These results suggested that differences in expression patterns of Capn3 variants might be related to the function of each variant in a particular tissue or species.  相似文献   

6.
We examined the time course of mRNA expression of myogenic cell differentiation- and muscle proteolytic system-related genes in cultures of C2C12 cells during differentiation from myoblasts to myotubes. Furthermore, we treated C2C12 myotubes with dimethyl sulphoxide (DMSO) and dexamethasone (Dex), and examined changes in these mRNA levels. Myogenin (Myog), Atrogin1, forkhead box O1 (Foxo1) and Capn1 mRNA levels increased in C2C12 cells differentiating from myoblasts to myotubes, whereas Myf5 mRNA levels decreased. Although genes such as MRF4, Foxo3a, UbB, Capn1 and MuRF1 mRNAs in the myotubes were affected by DMSO exposure, mRNA levels of other genes were not markedly affected by exposure to 0.02% or 0.5% DMSO. Myf5, MRF4, Atrogin1, Foxo3 and MuRF1 mRNA levels were elevated by Dex at all time points, Cbl and Capn1 mRNA levels were significantly elevated by Dex at 8 h, and Myog mRNA levels were significantly elevated by Dex at 24 h. However, CtsH mRNA levels decreased significantly with Dex at 24 h. This study provides a useful database of gene profiles that are differentially expressed throughout myogenic cell differentiation and the muscle proteolytic system.  相似文献   

7.
8.
9.
10.
11.
12.
Gastric pit cells are high‐turnover epithelial cells of the gastric mucosa. They secrete mucus to protect the gastric epithelium from acid and pepsin. To investigate the genetic mechanisms underlying the physiological functions of gastric pit cells, we generated a transgenic mouse line, namely, Capn8‐Cre, in which the expression of Cre recombinase was controlled by the promoter of the intracellular Ca2+‐regulated cysteine protease calpain‐8. To test the tissue distribution and excision activity of Cre recombinase, the Capn8‐Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4Co/Co). Multiple‐tissue PCR and LacZ staining demonstrated that Capn8‐Cre transgenic mouse expressed Cre recombinase in the gastric pit cells. Cre recombinase activity was also detected in the liver and skin tissues. These data suggest that the Capn8‐Cre mouse line described here could be used to dissect gene function in gastric pit cells. genesis 47:674–679, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.

Background  

μ-calpain and m-calpain are ubiquitously expressed proteases implicated in cellular migration, cell cycle progression, degenerative processes and cell death. These heterodimeric enzymes are composed of distinct catalytic subunits, encoded by Capn1 (μ-calpain) or Capn2 (m-calpain), and a common regulatory subunit encoded by Capn4. Disruption of the mouse Capn4 gene abolished both μ-calpain and m-calpain activity, and resulted in embryonic lethality, thereby suggesting essential roles for one or both of these enzymes during mammalian embryogenesis. Disruption of the Capn1 gene produced viable, fertile mice implying that either m-calpain could compensate for the loss of μ-calpain, or that the loss of m-calpain was responsible for death of Capn4 -/- mice.  相似文献   

14.
15.
Calpains are a family of Ca(2+)-dependent intracellular cysteine proteases, including the ubiquitously expressed micro- and m-calpains. Both mu- and m-calpains are heterodimers, consisting of a distinct large 80-kDa catalytic subunit, encoded by the genes Capn1 and Capn2, and a common small 28-kDa regulatory subunit (Capn4). The physiological roles and possible functional distinctions of mu- and m-calpains remain unclear, but suggested functions include participation in cell division and migration, integrin-mediated signal transduction, apoptosis, and regulation of cellular control proteins such as cyclin D1 and p53. Homozygous disruption of murine Capn4 eliminated both mu- and m-calpain activities, but this did not affect survival and proliferation of cultured embryonic stem cells or embryonic fibroblasts, or the early stages of organogenesis. However, mutant embryos died at midgestation and displayed defects in the cardiovascular system, hemorrhaging, and accumulation of erythroid progenitors.  相似文献   

16.
17.
We have analyzed the distribution of neural crest-derived precursors and the expression of catecholaminergic and neuronal markers in developing adrenal tissue of chick embryos. Undifferentiated neural crest cells are found in presumptive adrenal regions from embryonic day 3 (E3) onward. An increasing proportion of cells expressing tyrosine hydroxylase (TH) mRNA indicates catecholaminergic differentiation of precursors not only in primary sympathetic ganglia, but also in presumptive adrenal regions. Whereas precursors and differentiating cells show mesenchymal distribution until E5, discrete adrenal anlagen form during E6. Even during E5, catecholaminergic cells with low or undetectable neurofilament M (NF-M) mRNA expression prevail in positions at which adrenal anlagen become distinct during E6. The predominance of TH-positive and NF-M-negative cells is maintained throughout embryogenesis in adrenal tissue. RNA encoding SCG10, a pan-neuronal marker like NF-M, is strongly expressed throughout adrenal anlagen during E6 but is found at reduced levels in chromaffin cells compared with neuronal cells at E15. Two additional neuronal markers, synaptotagmin 1 and neurexin 1, are expressed at low to undetectable levels in developing chromaffin cells throughout embryogenesis. The developmental regulation of neuronal markers shows at least three different patterns among the four mRNAs analyzed. Importantly, there is no generalized downregulation of neuronal markers in developing adrenal anlagen. Thus, our observations question the classical concept of chromaffin differentiation from a common sympathoadrenal progenitor expressing neuronal properties and suggest alternative models with changing instructive signals or separate progenitor populations for sympathetic neuronal and chromaffin endocrine cells.Chaya Kalcheim and Klaus Unsicker are supported by the Deutsche Forschungsgemeinschaft (SFB 488)  相似文献   

18.
19.
The calpains are a family of Ca(2+)-dependent cysteine proteases implicated in various biological processes. In this family, calpain 6 (Capn6) is unique in that it lacks the active-site cysteine residues requisite for protease activity. During the search for genes downstream of the endothelin 1 (ET-1) signaling in pharyngeal-arch development, we identified Capn6. After confirming that the expression of Capn6 in pharyngeal arches is downregulated in ET-1-null embryos by in situ hybridization, we investigated its function. In Capn6-transfected cells, cytokinesis was retarded and was often aborted to yield multinucleated cells. Capn6 overexpression also caused the formation of microtubule bundles rich in acetylated alpha-tubulin and resistant to the depolymerizing activity of nocodazole. Green fluorescent protein-Capn6 overexpression, immunostaining for endogenous Capn6, and biochemical analysis demonstrated interaction between Capn6 and microtubules, which appeared to be mainly mediated by domain III. Furthermore, RNA interference-mediated Capn6 inactivation caused microtubule instability with a loss of acetylated alpha-tubulin and induced actin reorganization, resulting in lamellipodium formation with membrane ruffling. Taken together, these results indicate that Capn6 is a microtubule-stabilizing protein expressed in embryonic tissues that may be involved in the regulation of microtubule dynamics and cytoskeletal organization.  相似文献   

20.
Zhang X  You X  Wang Q  Zhang T  Du Y  Lv N  Zhang Z  Zhang S  Shan C  Ye L  Zhang X 《PloS one》2012,7(2):e31458
Hepatitis B virus X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). However, the mechanism remains unclear. Recently, we have reported that HBx promotes hepatoma cell migration through the upregulation of calpain small subunit 1 (Capn4). In addition, several reports have revealed that osteopontin (OPN) plays important roles in tumor cell migration. In this study, we investigated the signaling pathways involving the promotion of cell migration mediated by HBx. We report that HBx stimulates several factors in a network manner to promote hepatoma cell migration. We showed that HBx was able to upregulate the expression of osteopontin (OPN) through 5-lipoxygenase (5-LOX) in HepG2-X/H7402-X (stable HBx-transfected cells) cells. Furthermore, we identified that HBx could increase the expression of 5-LOX through nuclear factor-κB (NF-κB). We also found that OPN could upregulate Capn4 through NF-κB. Interestingly, we showed that Capn4 was able to upregulate OPN through NF-κB in a positive feedback manner, suggesting that the OPN and Capn4 proteins involving cell migration affect each other in a network through NF-κB. Importantly, NF-κB plays a crucial role in the regulation of 5-LOX, OPN and Capn4. Thus, we conclude that HBx drives multiple cross-talk cascade loops involving NF-κB, 5-LOX, OPN and Capn4 to promote cell migration. This finding provides new insight into the mechanism involving the promotion of cell migration by HBx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号