首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cárdenas H  Wiley TM  Pope WF 《Theriogenology》2004,62(1-2):123-129
Effects of prostaglandin F(2alpha) (PGF(2alpha)), administered during the mid-luteal phase of the estrous cycle, were examined in ewes exhibiting estrous cycles classified as short (< or =16.5 days, short-cycle ewes, n = 10) or long (> or =18 days, long-cycle ewes, n = 9) based on the durations of two estrous cycles (cycles -2 and -1) before treatment. The ewes received (i.m.) 20mg of PGF(2alpha) on day 10 of the third estrous cycle (cycle 0) followed, 36 h later, by 25 microg of gonadotropin releasing hormone (GnRH) to time the events of ovulation. Duration of subsequent estrous cycles +1 and +2 were recorded, and then the ewes were treated with the same combination of PGF(2alpha) and GnRH beginning on day 10 of estrous cycle +3. Ovaries were recovered 6h after GnRH administration to assess development of pre-ovulatory follicles. The proportion of ewes that exhibited estrus after PGF(2alpha) and GnRH treatment on cycle 0 was not different (P > 0.05) between short- and long-cycle ewes. Onset of estrus occurred sooner (P < 0.05) after PGF(2alpha) injection in short-cycle ewes than in long-cycle ewes (1.9 +/- 0.1 days and 2.3 +/- 0.1 days, duration of cycle 0 was 11.9 and 12.3 days, respectively). Duration of estrous cycle +1 was 1.2 days longer (P < 0.01) than cycle -1 in short-cycle ewes. However, duration of estrous cycle +1 did not change (P > 0.05) after PGF(2alpha) and GnRH administration in ewes having long cycles. Pre-ovulatory follicles did not differ (P > 0.05) in numbers, diameter, layers of granulosa cells nor concentrations of progesterone and estradiol-17beta in follicular fluid between short- and long-cycle ewes after PGF(2alpha) and GnRH treatment. In conclusion, ewes having short or long estrous cycles responded differently to PGF(2alpha) and GnRH treatment with respect to the interval to onset of estrus and duration of the subsequent estrous cycle.  相似文献   

2.
Three experiments were conducted on Texel ewes to study the influence of prostaglandin F(2alpha) (PGF(2alpha)), prolactin (PRL), estradiol (E(2)), and gonadotrophin releasing hormone (GnRH) on postpartum reproductive activity. In Experiment 1, oral administration of indomethacin (25 to 50 mg/day/ewe) from Day 3 post partum to the first detected estrus inhibited plasma 13, 14-dihydro-15-keto, PGF(2alpha) (PGFM) concentrations (P < 0.0001). This treatment resulted in an earlier rise in the frequency and amplitude of luteinizing hormone (LH) pulses and a resumption of estrous behavior (P < 0.05), while ovarian activity estimated by progesterone (P(4)) concentrations resumed to the same extent in treated ewes and controls. Bromocriptine treatment (2.5 mg/day/ewe) reduced plasma PRL levels (P < 0.0001) but had no effect on ovarian activity as evidenced by P(4) and resumption of estrus or on either the frequency or amplitude of the LH pulse. In Experiment 2, a single injection of GnRH agonist (42 mcg of buserelin/ewe) on Day 16 post partum resulted in an abrupt elevation of plasma LH concentrations; mean LH values were 18 to 27 times higher when compared with those of the control ewes. Two days after this treatment, ovulations occurred in 5 of the treated ewes and in 2 of the control ewes. This induced ovarian activity was not associated with estrous behavior; however, after an adequate subsequent luteal phase all the treated ewes displayed estrus, the resumption of estrus thus being earlier in treated than in control ewes (P < 0.01). In Experiment 3, E(2) supplementation from Day 16 to Day 28 post partum increased the number of LH pulses per 6 hours in suckling ewes (P < 0.05) and induced earlier resumption of estrus in dry ewes but not in suckling ewes (P < 0.01). Luteal function was detected about 5 and 8 days after the insertion of E(2) implants in 4 dry ewes and in 2 suckling ewes, respectively.  相似文献   

3.
Simultaneous injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH) or saline were given to 32 diestrous dairy cows to test the ability of GnRH to improve estrous and ovulation synchrony beyond that of PGF alone. Cows were randomly assigned to receive PGF on Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all cows were further assigned to simultaneous injection of GnRH or saline. Corpus luteum (CL) regression, return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF in all cows and were not affected by GnRH. Gonadotropin releasing hormone inducted premature ovulation or delayed return to estrus in 7 of 8 cows treated with PGF/GnRH on Day 8 and 3 of 8 cows treated with PGF/GnRH on Day 10. Further, cows with premature GnRH-induced ovulations failed to develop and maintain a fully functional CL, and all returned to estrus 7 to 13 days after the induced ovulation. These data indicate that GnRH administered simultaneously with a luteolytic dose of PGF disrupts follicular dynamics and induces premature ovulation or delays normal return to estrus and, therefore, does not improve the synchrony of estrus and ovulation achieved with PGF alone.  相似文献   

4.
Effect of stage of the estrous cycle at the time of prostaglandin F(2alpha) (PGF(2alpha)) injection on subsequent reproductive events in beef females was studied in four trials involving 194 animals. Cycling animals were given two injections of 25 mg PGF(2alpha) 11 days apart or, in some cases, the interval was altered to allow the second injection to fall on a specific day of the cycle. Day of estrous cycle at time of the second injection was determined by estrous detection. Interval from the second PGF(2alpha) injection to the onset of estrus (interval to estrus) was shorter (P<.01) in heifers than in cows. Both cows and heifers injected on days 5 to 9 (early cycle) had a shorter (P<.01) interval to estrus (estrus = day 0) than did those injected on days 10 to 15 (late cycle). Conception rate was lower (P<.05) for early-cycle heifers than for late-cycle heifers inseminated by appointment at 80 hours. There was no significant difference in conception rate of early-or late-cycle heifers or cows inseminated according to estrous detection or early- or late-cycle cows inseminated at 80 hours. Progesterone concentrations in blood samples collected in heifers at 4-hour intervals after the second PGF(2alpha) injection on either day 7 or day 14 declined linearly (P<.05) through 36 hours. Day of the estrous cycle at PGF(2alpha) injection had no effect on rate of progesterone decline, even though heifers injected on day 7 had a shorter (P<.05) interval to estrus. All animals whose cycle length was not affected by the second PGF(2alpha) injection were treated on days 5 through 8 of the cycle, indicating that PGF(2alpha) was less effective in regressing the corpus luteum between days 4 and 9 of the cycle than later in the cycle.  相似文献   

5.
Fukui Y  Roberts EM 《Theriogenology》1981,16(1):105-117
Two experiments were conducted to compare estrous response to three doses (8, 16 and 24 mg) of prostaglandin F(2alpha) (PGF(2alpha)) administered by intramuscular injection to ewes between day 6 and 12 of the estrous cycle (Experiment I) and to ewes on unknown days of the estrous cycle during four different stages of the breeding season (Experiment II). In experiment I, a total of 41 ewes were treated with PGF(2alpha). The injection of 24 mg PGF(2alpha) resulted in a higher proportion of ewes exhibiting estrus (13 14 , 92.9%) within 5 days after treatment as compared to the other two doses (2 12 and 10 15 , for 8 and 16 mg PGF(2alpha), respectively). However, there was no significant difference for the proportion between 16 mg and 24 mg PGF(2alpha). In experiment II, PGF(2alpha) was given to ewes on the 3rd of February (early breeding season), the 28th of February (mid-early breeding season), the 10th of April (mid breeding season) and the 27th of May (late breeding season). These was a significant difference for the proportion of ewes exhibiting estrus between the early breeding season and the other three seasons (P < 0.05) but not for ewes ovulating. Throughout the breeding season, 16 mg PGF(2alpha) appeared to be slightly better than the other two doses (8 and 24 mg) although there was no overall difference in the estrous responses to treatment among the three doses. However, a significant difference in the proportion of ewes ovulating was found among the three doses of PGF(2alpha) (P < 0.05). Especially, 16 mg PGF(2alpha) was significantly superior to 8 mg (P < 0.01) and 24 mg (P < 0.05). It was considered that there was a complicated relationship between the doses of PGF(2alpha) and the stages of the breeding season for induction of estrus and ovulation in the ewe.  相似文献   

6.
Two experiments (Experiment 1, 185 cows in 1996/97; Experiment 2, 168 cows in 1997/98) were conducted with Prim Holstein dairy cattle in the Mayenne region of France to investigate subestrus. Cows which had not been observed in estrus since calving were allocated alternately to treatment groups between 60 and 90 d post partum as follows: Experiment 1-Group 1: GnRH (Day 0, 100 micrograms i.m.), PGF2 alpha (Day 7, 25 mg i.m.), GnRH (Day 9, 100 micrograms i.m.) and AI (Day 10); Group 2: PGF2 alpha (Day 0, 25 mg i.m.), AI at estrus, or, if estrus was not observed, a second PGF2 alpha injection on Day 13, and AI on Day 16 and Day 17. Treatments in Experiment 2 were as follows: Group 1: as Experiment 1-Group 1 but AI at the observed estrus after Day 0, or at Day 10 if estrus was not observed; Group 2: as Experiment 1--Group 2, however, if a second PGF2 alpha injection was given on Day 13, AI at the observed estrus. Progesterone was measured in serum at Day 0 and in milk at AI. Pregnancy diagnosis was performed by measuring bovine pregnancy-specific protein B (bPSPB; Day 50 +/- 3) and confirmed by ultrasonography when the result was doubtful. In Experiment 1, farmers observed 47/101 (46.9%) Group 1 cows in estrus, 33/91 cows on Day 10 and 10 cows before Day 10. The progesterone concentrations were compatible with estrus in 69/86 (80%) cows on Day 10. In Group 2, 36/83 (43.4%) cows were inseminated after the first PGF2 alpha injection. After the second PGF2 alpha injection, only 29/43 (67%) cows had a low progesterone concentration at AI. Pregnancy rates were 36.1 and 32.5% for Groups 1 and 2, respectively. In Experiment 2, estrus was observed in 31/93 (33.7%) Group 1 cows. In Group 2, 51/75 (66%) cows were inseminated after the first injection of PGF2 alpha, 13/75 (17.3%) cows after the second injection, while 11/75 (14.7%) were not observed in estrus. Pregnancy rates were 53.7 and 53.3% in Groups 1 and 2, respectively. In conclusion, it is recommended that subestrus be treated with PGF2 alpha followed by AI at the observed estrus when estrus detection is good, while the use of GnRH + PGF2 alpha + GnRH is recommended when estrus detection is poor.  相似文献   

7.
Human chorionic gonadotrophin (hCG) plus PGF2 alpha was compared with GnRH plus PGF2 alpha for estrus synchronization of dairy cows. There were 3 treatments: GnRH analog (Buserelin, 12.6 micrograms) plus PGF2 alpha analog (Cloprostenol, 150 micrograms) 6 d later (GnRH + PGF[Day 6]); hCG (2000 IU) plus PGF2 alpha 9 d later (hCG + PGF[Day 9]); and hCG plus PGF2 alpha 6 d later (hCG + PGF[Day 6]). Treatment occurred either Days 55 to 90 or Days 91 to 135 post partum. For responses during the first 10 d after PGF2 alpha administration, estrus synchronization (P = 0.24), efficacy (percentage of treated pregnant; P = 0.20) and conception (percentage of inseminated pregnant; P = 0.23) rates were not different among the 3 treatments. Cows treated between Days 55 and 90 had a higher rate (P < 0.05) of detected estrus during this period (69% for GnRH + PG [Day 6], 70% for hCG + PGF[Day 9] and 72% for hCG + PGF[Day 6]) compared with cows treated between Days 91 and 135 (52% for GnRH + PGF[Day 6], 50% for hCG + PGF[Day 9] and 57% for hCG + PGF[Day 6]). Efficacy of treatment was higher (P < 0.05) in animals treated between Days 55 and 90 (54% for GnRH + PGF[Day 6], 56% for hCG + PGF[Day 9] and 63% for hCG + PGF [Day 6]) compared to animals treated between Days 91 and 135 (36% for GnRH + PGF[Day 6], 35% for hCG + PGF[Day 9] and 47% for hCG + PGF[Day 6]). There were no significant differences in conception between Days 51 and 90 and Days 91 and 135. The interval between parturition-first AI with conception was significantly (P < 0.001) shorter in GnRH + PGF (Day 6; 106 d), hCG + PGF (Day 9; 109 d) and hCG + PGF (Day 6; 103 d) treated cattle than in 106 untreated animals (136 d). Thus, GnRH plus PGF2 alpha or hCG plus PGF2 alpha treatments elicited similar effects in estrus synchronization, treatment efficacy, and conception rate in post-partum dairy cows.  相似文献   

8.
The objectives of the present study were to evaluate the induction of estrus and fertility in yak cows treated with Co-Synch regimens or progesterone (P(4)). In Experiment 1, postpartum suckled yaks were assigned to three treatments: (1) A (n=28), insertion of an intravaginal device containing P(4) (CIDR) on Day 0, PGF(2alpha) (i.m.) on Day 6 and PMSG (i.m.) at the time of CIDR removal on Day 7 (P(4)-PGF(2alpha)-PMSG); (2) B (n=21), PGF(2alpha) (i.m.) on Day 6 and PMSG on Day 7; (3) C (n=26), control group. Seven yak bulls were grazed with the cows for natural breeding. Rate of estrus within 96h of the end of treatment was greater (P<0.05) in A (100.0%) than in B (28.6%) or C (0.0%). First service conception rate (CR) determined by serum P(4) on Day 21 after breeding was greater (P<0.05) in A (78.6%) than in B (22.2%). Also, pregnancy rate (PR) during the breeding season was greater (P<0.05) in A (82.1%) than in B (19.0%) and C (7.7%). In Experiment 2, non-suckled yaks that calved in previous years but not in the current year were assigned to three treatments: (1) A (n=31), GnRH (i.m.) on Day 0, followed by PGF(2alpha) on Day 7 and timed artificial insemination (TAI) concurrently with GnRH treatment on Day 9 (Co-Synch regimen); (2) B (n=50), a CIDR device for 7 days plus PGF(2alpha) and PMSG at the time of CIDR withdrawal on Day 7 and TAI on Day 9 (P(4)-PGF(2alpha)-PMSG); (3) C (n=50), yak cows were artificially inseminated at spontaneous estrus. Frozen semen of Holstein and Jersey were used for insemination in Experiment 2. The CR assessed by rectal palpation 35 days after TAI was not different in A (22.6%), B (30.0%) and C (33.3%), but PR was greater in A and B than in C, when based on those cows presented for estrous synchronization programs. It is concluded that P(4)-PGF(2alpha)-PMSG protocol could efficiently induce estrus and result in an acceptable pregnancy rate in postpartum suckled yak cows. This technique and Co-Synch regimen can be applied successfully for TAI of non-suckled yak cows.  相似文献   

9.
To investigate the effects of prostaglandin (PGF 2alpha) plus GnRH at different stages of the luteal phase 13 ewes received PGF 2alpha on Day 9 of the synchronized cycle, followed 36 h later by GnRH. This control regimen resulted in ovulation and normal corpus luteum (CL) function. In the next cycle, the ewes were treated simultaneously with PGF 2alpha and GnRH either on Day 4 (early, n = 7) or Day 9 (late, n = 6). Ovarian activity was monitored daily by ultrasonography, and blood samples were obtained to monitor hormonal patterns. Size of the largest follicle present when GnRH was administered was similar in all groups, but the preceding growth rate was greatest for the early group. In the 36 h after injection of PGF 2alpha, serum progesterone (P4) had declined to basal levels in the control cycles when GnRH was administered, but P4 concentrations were higher in the early group and were highest in the late group when the GnRH was administered with PGF 2alpha. The LH surges induced by GnRH were highest in the control cycles, and were lower in the 2 treated groups. In the early group, 6 of 7 ewes demonstrated ovulation within 48 h of GnRH, resulting in the formation of normal CL. In the late group, ovulation was delayed for about 5 d in 4 of 6 ewes, and subsequent luteal function was normal; no ovulation was detected in the other 2 ewes of this group, but the follicles became luteinized, resulting in a normal P4 profile in one and subnormal in the other. These results suggest that follicles present during the early luteal phase are capable of ovulating and forming fully functional CL in response to exogenous GnRH. In contrast, follicles present during the late luteal phase fail to ovulate in response to GnRH while P4 levels are high, even though the LH stimulus is adequate; however, these follicles persist and subsequently ovulate after P4 levels have decreased. Therefore, the endocrine milieu to which a follicle was exposed may be more important than its size in determining its ability to undergo ovulation and development into a normal CL.  相似文献   

10.
The efficacy of GnRH and PGF2alpha (7-day injection interval) for estrus synchronization is diminished by estrous expression before PGF2alpha (premature estrus; PE). Effects of modifications to GnRH-PGF2alpha protocols on the incidence of PE and other indicators of reproductive performance were evaluated. In Experiment 1, Angus-based crossbred cows (n=51) received 25 mg of PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity and interval postpartum to receive GnRH 100 microg i.m. on either Day -7 or Day -6. Estrous detection and AI were conducted from Day -3 to Day 5. Treatment had no effect on the incidence of PE, estrous response, conception rate per AI or synchronized pregnancy rate (6- vs. 7-day interval; 8 vs. 15%; 92 vs. 93%; 77 vs. 76%; 71 vs. 70%, respectively). In Experiment 2, Angus cows (n=150) received GnRH 100 microg i.m. on Day -7 and 25 mg PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity, interval postpartum, and body condition score to receive either no further treatment (Control) or 0.5 mg melengestrol acetate/hd/d from Day -7 to Day -1 (MGA). Estrous detection and AI were conducted from Day -2 to Day 7. Fewer (P < 0.05) MGA-treated cows were detected in PE (0%) compared to controls (7%). Treatment had no effect on estrous response or synchronized pregnancy rates (Control vs. MGA; 78 vs. 84%; 52 vs. 60%, respectively). Conception rate per AI of cows > or = 60 days postpartum were not affected by treatment (Control vs. MGA; 79 vs. 73%) however, control cows < 60 days postpartum tended (P < 0.10) to have lower conception rates per AI (39%) than did their MGA-treated counterparts (69%). In summary, 6- and 7-day GnRH-PGF2alpha injection intervals resulted in similar synchronized reproductive performance. Inclusion of MGA feeding between GnRH and PGF2alpha injections eliminated the occurrence of premature estrus and improved conception rate per AI of late-calving cows.  相似文献   

11.
Exogenous prostaglandin F(2alpha) (PGF(2alpha)) rapidly increases ovarian oxytocin (OT) release and decreases progesterone (P4) secretion in cattle. Hence, the measurement of OT secretion (the area under the curve and the height of the peak) after different doses of Oestrophan - PGF(2alpha) analogue (aPGF(2alpha)) on Days 12 and 18 of the estrous cycle (estrus = day 0), could be a suitable indicator of corpus luteum (CL) sensitivity to PGF(2alpha) treatment. Mature heifers (n = 36) were used in this study. Blood samples were collected from the jugular vein for the estimation of OT, P4 and 13, 14-dihydro-15-keto-prostaglandin F(2alpha) (PGFM). In Experiment 1, different doses of aPGF(2alpha) (400, 300, 200 and 100 microg) given on Day 12 of the estrous cycle (n = 8) shortened (P < 0.05) the cycle duration (15.2 +/- 0.6 d) compared with that of the control (21.7 +/- 0.4 d). Successive heifers were also treated on Day 12 with 200 (n = 2), 100 (n = 2), 75 (n = 2) or 50 microg aPGF(2alpha) (n = 2). Only the 50 microg aPGF(2alpha) dose did not cause CL regression, although it increased OT concentrations to levels comparable to those observed during spontaneous luteolysis (50 to 70 pg/ml). In Experiment 2, on Day 18 of the cycle heifers (n = 8) were treated with 50, 40, 30 and 20 microg aPGF(2alpha). There was a dose-dependent effect of aPGF(2alpha) on OT secretion on Day 18 of the estrous cycle (r = 0.77; P < 0.05). In Experiment 3, an injection of 500 microg aPGF(2alpha) on Day 12 (n = 4) and 50 microg aPGF(2alpha) on Day 18 (n = 4) caused a similar (P > 0.05) increase in the OT concentration (288.5 +/- 23.0 and 261.5 +/- 34.7 pg/ml, respectively). Thus the effect of the same dose of aPGF(2alpha) (50 microg) on OT secretion was different on Days 12 and 18 of the cycle. To evoke similar OT secretion on Days 12 and 18 the dose of aPGF(2alpha) on Day 18 could be reduced 10-fold, confirming that CL sensitivity to PGF(2alpha) appears to increase in the late luteal phase.  相似文献   

12.
The objectives of this experiment were to compare estrous synchronization responses and AI pregnancy rates of beef heifers using protocols that included either CIDR or MGA as the progestin source. The hypotheses tested were that: (1) estrous synchronization responses after (a) progestin removal, and (b) PGF(2alpha); and, (2) AI pregnancy rates, do not differ between heifers synchronized with either progestin source. At the start of the experiment (Day 0) in both years, heifers were assigned randomly to receive, MGA supplement for 14 days (MGA-treated; n=79) or CIDR for 14 days (CIDR-treated; n=77). On Day 14 progestin was removed and heifers were observed for estrus up to and after PGF(2alpha) on Days 31 and 33 for CIDR-treated and MGA-treated heifers, respectively. Heifers that exhibited estrus within 60h after PGF(2alpha) were inseminated by AI 12h later; the remaining heifers were inseminated at 72h after PGF(2alpha) and given GnRH (100mug). More (P<0.05) CIDR-treated heifers exhibited estrus within 120h after progestin removal than MGA-treated heifers. Intervals to estrus after progestin removal were shorter (P<0.05) for CIDR-treated heifers than MGA-treated heifers. More (P<0.05) CIDR-treated heifers exhibited estrus and were inseminated within 60h after PGF(2alpha) than MGA-treated heifers. Pregnancy rates did not differ (P>0.10) between MGA-treated (66%) and CIDR-treated (62%) heifers. In conclusion, the use of CIDR as a progestin source in a 14-day progestin, PGF(2alpha), and timed AI and GnRH estrous synchronization protocol was as effective as the use of MGA to synchronize estrus and generate AI pregnancies in beef heifers.  相似文献   

13.
The role of the ram effect on the reproductive performance of ewes that have initiated estrous cycles following lambing in combination with synchronization of estrus using PGF(2α) was examined. A total of 1264 Corriedale × Merino ewes in the breeding season (March-April) were allocated to one of three treatments. The control group (PG2) of ewes (n=415) were in permanent direct contact with vasectomized rams throughout the experiment from 60 d prior to the administration of the first luteolytic dose of PGF(2α) which was followed by a second dose 13 d later (Day 0 of the experiment). Ewes assigned to the other two treatments remained isolated from rams until Day 0. In the second treatment, ewes (PG2RE; n=445) were administered PGF(2α) in the same manner and were joined with vasectomized rams at Day 0. Ewes allocated to the third treatment (PGRE; n=404) did not receive the second dose of PGF(2α) but were introduced to vasectomized rams on Day 0. Sexual receptivity, as indicated by tail-head marking, was recorded until d 11. More PG2RE ewes (407/445; 92%) were observed in estrus by Day 11 than occurred for PG2 ewes (353/415; 85%; P=0.003). The accumulated frequency of PG2RE ewes in estrus was greater than for PG2 ewes for each period from Day 3 (P<0.001) to Day 11 (P<0.01). The onset of estrus was earlier in PG2RE ewes (2.98±0.07 d) than for PG2 ewes (3.31±0.07 d; P<0.0001). In contrast, the total frequency of PGRE ewes observed in estrus by Day 11 (356/404; 88%) was similar to that observed for PG2 ewes. However, the trajectory of the accumulated frequency of the incidence of estrus was less for the PGRE ewes initially, particularly during the period of Days 3-6 of observation (P<0.0001). Consequently, onset of estrus was earlier in PG2 ewes (3.31±0.07 d) than for PGRE ewes (5.30±0.11 d; P<0.0001). It was concluded that the introduction of vasectomized rams simultaneously with the second administration of PGF(2α) advanced the onset of estrus and increased the number of ewes that responded. The introduction of rams 13 d after a single dose of PGF(2α) did not substitute for the second administration of PGF(2α).  相似文献   

14.
Angus (n=6), Brangus (5/8 Angus x 3/8 Brahman, n=6), and Brahman x Angus (3/8 Angus x 5/8 Brahman, n=6) heifers exhibiting estrous cycles at regular intervals were used to determine if the percentage of Bos indicus breeding influenced the secretory patterns of LH in response to a GnRH treatment on Day 6 of the estrous cycle. Heifers were pre-synchronized with a two-injection PGF(2 alpha) protocol (25 mg i.m. Day -14 and 12.5 mg i.m. Day -3 and -2 of experiment). Heifers received 100 microg GnRH i.m. on Day 6 of the subsequent estrous cycle. Blood samples were collected at -60, -30, and -1 min before GnRH and 15, 30, 60, 90, 120, 150, 180, 240, 300, 360, 420, and 480 min after GnRH to determine concentrations of serum LH. Estradiol concentrations were determined at -60, -30, and -1 min before GnRH. On Day 6 and 8, ovaries were examined by ultrasonography to determine if ovulation occurred. On Day 13, heifers received 25 mg PGF(2 alpha) i.m. and blood samples were collected daily until either the expression of estrus or Day 20 for heifers not exhibiting estrus to determine progesterone concentrations. There was no effect (P>0.10) of breed on ovulation rate to GnRH as well as size of the largest follicle, mean estradiol, and mean corpus luteum volume at GnRH. Mean LH was greater (P<0.05) for Angus (7.0+/-0.8 ng/mL) compared to Brangus (4.6+/-0.8 ng/mL) and Brahman x Angus (2.9+/-0.8 ng/mL), which were similar (P>0.10). Mean LH peak-height was similar (P>0.10) for Brangus (13.9+/-3.4 ng/mL) compared to Angus (21.9+/-3.4 ng/mL) and Brahman x Angus (8.0+/-3.4 ng/mL), but was greater (P<0.05) for Angus compared to Brahman x Angus. Interval from GnRH to LH peak was similar (P>0.10) between breeds. As the percentage of Bos indicus breeding increased the amount of LH released in response to GnRH on Day 6 of the estrous cycle decreased.  相似文献   

15.
Hair sheep ewes (St. Croix White and Barbados Blackbelly) were used to evaluate 3 methods of estrus synchronization for use with transcervical artificial insemination (TAI). To synchronize estrus, ewes (n = 18) were treated with PGF2alpha (15 mg, im) 10 d apart, with controlled internal drug release (CIDR) devices containing 300 mg progesterone for 12 d (n = 18), or with intravaginal sponges containing 500 mg progesterone for 12 d (n = 18). On the day of the second PGF2alpha injection or at CIDR or sponge removal, sterile rams were placed with the ewes. Jugular blood samples were collected from the ewes at 6-h intervals until the time of ovulation, and daily for 16 d after estrus (Day 0). Plasma was harvested and stored at -20 degrees C until LH, and progesterone concentrations were determined by RIA. There was no difference (P>0.10) in time to estrus among the CIDR-, PGF2alpha- or sponge-treated ewes. All of the ewes in the CIDR group and 94.4% of the sponge treated ewes exhibited estrus by 36 h after ram introduction, while only 72.2% of PGF2alpha-treated ewes showed signs of estrus by this time (P<0.06). The time from ram introduction to ovulation was not different (P>0.10) among the CIDR-, PGF2alpha- or sponge-treated ewes. The time to the preovulatory LH surge was similar (P>0.10) among CIDR, PGF2alpha and sponge treated ewes. Progesterone levels through Day 16 after the synchronized estrus were not different (P>0.10) among treatment groups. Hair sheep ewes (n = 23) were synchronized using PGF2alpha and bred by TAI using frozen-thawed semen 48 h after the second injection. The conception rate to TAI was 2/23 (8.7%) and produced 3 ram lambs. In a subsequent trial, 17 ewes were synchronized with CIDR devices and bred by TAI using frozen-thawed semen 48 h after CIDR removal, resulting in a conception rate of 52.9% (9/17). It is possible to synchronize estrus in hair sheep using either CIDRs, sponges or PGF2alpha. Even though there were no significant differences in the timing of ovulation or the LH surge among the treatment groups, a higher conception rate was achieved in ewes synchronized with CIDR devices during the second trial. This may reflect an increase in the skill level of the TAI technician.  相似文献   

16.
Three experiments were conducted, using multiparous crossbred beef cows, to test the ability of exogenous prostaglandin F(2alpha) (PGF) and/or naloxone to reduce the duration of the postpartum interval to estrus and to improve subsequent reproductive performance. In each experiment, postpartum cows were assigned to treatments by calving date. In Experiment 1, cows (n=44) were assigned to 1 of 4 treatment groups: 1) control, 2) PGF on Day 25 post partum, 3) 400 mg naloxone (3 doses) at 12-h intervals on Day 30 post partum, and 4) PGF on Day 25 followed by 3 400-mg doses naloxone at 12-h intervals on Day 30 post partum. In Experiment 2, cows (n=126) were assigned either to 1) control or 2) PGF on Day 30 post partum In Experiment 3, cows (n=67) were again assigned to 1 of 4 treatments 1) control, 2) PGF on Day 30 post partum, 3) PGF on Day 40 post partum, and 4) PGF on Day 30 and 40 post partum. Serum progesterone was used to determine the postpartum interval to estrus in Experiments 1 and 3. In all 3 experiments, serum progesterone was used to determine the proportion of cows that had reestablished estrous cycles at the start of breeding. Pregnancy rate and calving interval were analyzed for all trials. Naloxone had no effect (P > 0.20) on any reproductive variable measured. The postpartum interval to estrus was similar (P > 0.30) for PGF-treated and control cows in Experiments 1 and 3. The proportion of cows cycling at the start of breeding and the calving interval were not affected (P > 0.20) by PGF treatment in any of the experiments. Only the administration of PGF on Day 40 post partum in Experiment 3 improved (P=0.04) the subsequent pregnancy rate. Analysis of data pooled across experiments showed that the pregnancy rate was higher (P=0.03) for cows treated with PGF than for control cows (91.4 and 72.9%, respectively). It was concluded that administration of PGF during the early postpartum period improves subsequent reproductive function in beef cows.  相似文献   

17.
Luteolysis in the cow depends upon an interaction between prostaglandin F(2alpha) (PGF(2alpha)) and oxytocin. The objectives of our study were 1) to determine oxytocin concentrations in postpartum dairy cows and 2) to identify the temporal relationship between oxytocin and PGF(2alpha) release patterns during luteolysis in normal and abbreviated estrous cycles in the postpartum period. Serum oxytocin and PGF(2alpha) metabolite (PGFM) concentrations from nine cows which had short estrous cycles (< 17 d) were compared with those of six cows which had normal estrous cycles. Serum basal oxytocin concentrations in short estrous cycle cows (23.7 to 31.1 pg/ml) were higher (P<0.05) than those of normal estrous cycle cows (14.6 to 19.8 pg/ml). Oxytocin concentrations increased to peak values in both short and normal cycle cows, during luteolysis. Basal PGFM concentrations (112.2 to 137.4 pg/ml) were higher in cows with short cycle (P<0.05) than in cows with normal cycles (62.9 to 87.5 pg/ml). The increase in PGFM concentrations during luteolysis was significant in both normal cycle and short cycle cows (P<0.05). Increases in serum PGFM concentrations were always associated with increases in serum oxytocin concentrations in normal cycle and short cycle cows and the levels decreased simultaneously before the subsequent estrus. Results support the idea of a positive relationship between PGF(2alpha) and oxytocin concentration during the estrous cycle as well as a possible synergistic action of these hormones in the induction of luteolysis in dairy cattle.  相似文献   

18.
Three experiments were conducted to determine the effects of passively immunizing pigs against gonadotropin releasing hormone (GnRH) during the follicular phase of the estrous cycle. In Experiment 1, sows were given GnRH antibodies at weaning and they lacked estrogen secretion during the five days immediately after weaning and had delayed returns to estrus. In Experiment 2, gilts passively immunized against GnRH on Day 16 or 17 of the estrous cycle (Day 0 = first day of estrus) had lower (P<0.03) concentrations of estradiol-17beta than control gilts, and they did not exhibited estrus at the expected time (Days 18 to 22). When observed three weeks after passive immunization, control gilts had corpora lutea present on their ovaries, whereas GnRH-immunized gilts had follicles and no corpora lutea. The amount of GnRH antiserum given did not alter (P<0.05) serum concentrations of LH or pulsatile release of LH in sows and gilts. In Experiment 3, prepuberal gilts were given 1,000 IU PMSG at 0 h and GnRH antiserum at 72 and 120 h. This treatment lowered the preovulatory surge of LH and FSH, but it did not alter serum estradiol-17beta concentrations, the proportion of pigs exhibiting estrus, or the ovulation rate. These results indicate that passive immunization of pigs against GnRH before initiation of or during the early part of the follicular phase of the estrous cycle retards follicular development, whereas administration of GnRH antibodies during the latter stages of follicular development does not have an affect. Since the concentration of antibodies was not high enough to alter basal or pulsatile LH secretion, the mechanism of action of the GnRH antiserum may involve a direct ovarian action.  相似文献   

19.
Early luteal regression in cattle has an embryotoxic effect that is not overcome by replacement with progesterone, but is prevented by removal of the regressing CL. Two experiments were designed to test the null hypothesis that the luteal component of the embryotoxic effect is delivered by a systemic pathway. Beef heifers and cows (n = 39) received two good quality embryos, one placed into each uterine horn on Day 6 or 7 of the estrous cycle. Treated animals (n = 20) received 15 mg of PGF2alpha three times per day from Day 7 (n = 11; Experiment 1) or 5 (n = 9; Experiment 2) through 8; controls (n = 19) received saline. Progestogen replacement therapy (12 mg flurogestone acetate daily, s.c.) was provided from Day 6 (Experiment 1) or 4 (Experiment 2) until ultrasonographic diagnosis of embryo survival on Day 35 after estrus. The effects of treatment, location of the embryo and location by treatment interaction on embryo survival were tested by Chi square. In Experiment 1, there was no significant difference in embryo survival rate between PGF2alpha-treated and control recipients. In Experiment 2, only 6 of 18 embryos survived to Day 35 when transferred to animals treated with PGF2alpha compared to 12 of 18 in control animals (P< 0.05). The survival of embryos did not differ with location (adjacent or opposite to the regressing CL) or location by treatment interaction. Thus no evidence was obtained to support a local effect of the regressing CL. The embryo mortality associated with luteolytic doses of PGF2alpha in cows receiving replacement therapy with progestogen probably involves compounds that either act systemically or are transported via the uterine lumen to the uterine horn contralateral to the regressing CL.  相似文献   

20.
This study aimed to confirm that the luteolysis in normal-cycling dairy heifers seen during short estrous cycles induced with cloprostenol (Clp) and GnRH administered 24h apart is caused by a premature release of prostaglandin F(2alpha) (PGF(2alpha)). A further aim was to study the PGF(2alpha) release pattern more closely to determine whether it resembles the spontaneous release occurring during normal regression of the corpus luteum (CL) or whether PGF(2alpha) is continuously secreted after the induced ovulations, leading to short estrous cycles. Twenty-four Ayrshire heifers were allotted to four equally sized groups. After estrus synchronization with 0.5mg of Clp, a new luteolysis was induced with 0.5mg of Clp on Day 6 (groups T-d6 and C-d6) or Day 7 (groups T-d7 and C-d7) after ovulation. Gonadorelin (0.1mg i.m.) was given to groups T-d6 and T-d7 to induce premature ovulation 24h later. Groups C-d6 and C-d7 served as controls. Ovaries were examined daily by transrectal ultrasonography, while blood samples (for progesterone and 15-ketodihydro-PGF(2alpha) analyses) were obtained via a jugular catheter every 3h, starting from the second Clp treatment and continuing for 9 days postovulation. Unresponsiveness to Clp or anovulation resulted in 4 C-d6 heifers being excluded. Four heifers in group T-d6 and three in group T-d7 had a short estrous cycle of 8-12 days, while all others had a cycle of normal length. Significant elevations in 15-ketodihydro-PGF(2alpha) concentrations with recurrent high peaks coincided with a decrease in progesterone concentration and were detected in all heifers that showed a short estrous cycle, but not in any heifers with normal estrous cycles in groups T and C. In conclusion, a premature release of PGF(2alpha), which closely resembles its release during spontaneous luteolysis, causes luteal regression in these short cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号