首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
S Yoneda  K Kitamura  M Doi  M Inoue  T Ishida 《FEBS letters》1988,239(2):271-275
Simulations of the molecular dynamics of the [Met5]enkephalin monomer and dimer structures in water have been carried out. The dynamic trajectories have been analyzed in terms of the distances between intra- or intermolecular polar atoms. The time-correlated conformational transitions of an extended monomer structure have been converged into a stationary state among the beta-bend folded forms. However, the dynamics simulation of an extended antiparallel dimer structure has shown no noticeable conformation change. These results imply that both the beta-bend monomer and the extended dimer structures exist together as the fundamental conformation of enkephalins.  相似文献   

2.
The crystal structure of [(4-bromo)Phe4,Met5]enkephalin (Tyr-Gly-Gly-(4-bromo)-Phe-Met) shows two independent molecular conformations. The molecules are arranged in parallel in a head-to-tail fashion and form an antiparallel beta-sheet structure involving intermolecular hydrogen bonds. This dimeric beta-structure is also observed in the [Met5]enkephalin crystal, in spite of their different crystal packing environments, which shows the energetic stability of this molecular conformation. The three-dimensional similarity between the dimeric beta-structure and the beta-turn form is discussed in the relation to the opioid delta and mu receptors.  相似文献   

3.
125I[D-Ala2, Met5] enkephalin with high specific activity (122-185 Ci/mmol) was prepared and purified by Sep-Pak C18 reverse phase cartridge followed by high performance liquid chromatography (HPLC). HPLC at pH 3.0 resolved 125I[D-Ala2, Met5] enkephalin into two fractions, which ran as a single spot in thin-layer chromatography with the same Rf values. Alkaline hydrolysates of the HPLC-purified fractions showed a single spot corresponding to monoiodotyrosine standard when analysed by thin-layer chromatography. Binding kinetics of the tracer was found to approach equilibrium after 30 min at 24 degrees. Scatchard analysis of the saturation equilibrium binding studies gave an equilibrium dissociation constant of 3.58 nM and the number of binding site of 30 fmol/mg protein. Enkephalin analogs were capable of displacing 125I[D-Ala2, Met5] enkephalin binding from the rat brain plasma membrane. The effective concentration of [D-Ala2, Met5] enkephalin and [D-Ala2, Leu5] enkephalin for 50% inhibition of 125I[D-Ala2, Met5] enkephalin binding was estimated to be 79 nM and 23 nM, respectively. Both substance P and gastrin tetrapeptide failed to displace the 125I[D-Ala2, Met5] enkephalin binding to any significant extent. The 125I[D-Ala2, Met5] enkephalin prepared by the present procedure is therefore a useful tracer. This method of preparing radioiodinated peptide may be applicable to other enkephalin analogs or neuropeptides in general.  相似文献   

4.
M Doi  M Tanaka  T Ishida  M Inoue 《FEBS letters》1987,213(2):265-268
The three-dimensional similarity between two fundamental conformations, a dimeric antiparallel extended structure and a type I' beta-turn folded form, of enkephalin was examined by computer graphic and empirical energy calculation methods. By the rotation of Tyr and Phe side chains, one half of the former structure could mimic the three-dimensional form of the latter without a large loss of conformational energy. This result provides a new idea for considering the conformation of enkephalin suitable for the multiple opioid receptors. The active conformation of enkephalin for mu- and delta-opioid receptors is discussed in the light of the present study.  相似文献   

5.
In order to investigate the structure-activity relationship of [Leu5]- and [Met5]enkephalins, [(4'-bromo)Phe4, Leu5]-, [(4'-bromo)Phe4, Met5]- and [Met5] enkephalins were synthesized and crystallized. The crystal structure of [(4'-bromo) Phe4, Leu5]- enkephalin was determined by X-ray diffraction method using the heavy atom method and refined to R = 0.092 by the least-squares method. The molecule in this crystal took essentially the same type I' beta-turn conformation found in [Leu5]enkephalin [Smith & Griffin (1978) Science 199, 1214-1216). On the other hand, the preliminary three-dimensional Patterson analyses showed that the most probable conformations of [(4'-bromo)Phe4,Met5]- and [Met5]enkephalins are both the dimeric extended forms. Based on these insights, the biologically active conformation of enkephalin was discussed in relation to the mu- and delta-receptors.  相似文献   

6.
Hydrolysis of [Leu]- and [Met]enkephalin was determined in whole rat plasma in vitro by using HPLC-ECD to measure Tyr, Tyr-Gly and Tyr-Gly-Gly formation. Although [Leu]- and [Met]enkephalin did not differ in Tyr or Tyr-Gly accumulation, the amount of Tyr-Gly-Gly resulting from [Met]enkephalin hydrolysis was greater than that resulting from [Leu]enkephalin hydrolysis, and [Met]enkephalin's half-life in plasma was slightly shorter than that of [Leu]enkephalin. By comparing metabolite formation in the presence and absence of peptidase inhibitors with high selectivity for their respective enzymes, these studies demonstrated that aminopeptidase M and angiotensin converting enzyme are the major peptidases that hydrolyze enkephalins in rat plasma.  相似文献   

7.
M M Dhingra  A Saran 《Biopolymers》1989,28(7):1271-1285
The solution conformation of [D-Ala2]-leucine enkephalin in its zwitterionic form in DMSO-d6 has been monitored by one- and two-dimensional proton magnetic resonance spectroscopy at 500 MHz. The resonances from the labile amide protons and the nonlabile protons have been assigned from the shift correlated spectroscopy. The chemical shift of the amide and C-alpha protons are found to vary with temperature but in opposite directions, except the C-alpha proton of the terminal tyrosine residue. This behavior has been explained by the shifting of equilibrium between the zwitterionic and neutral forms of the [D-Ala2]-leucine enkephalin and probably conformational changes accompanying temperature variation. The low values of the temperature coefficients of leucine and glycine amide protons indicate that these protons are either intramolecularly hydrogen bonded or solvent shielded. The observation of sequential cross peaks in the nuclear Overhauser effect spectra obtained at various mixing times, tau m (200-900 ms), indicate an extended backbone, which does not corroborate with the presence of a folded structure, i.e., beta-bend type structure. The estimate of interproton distances in conjunction with the low values of temperature coefficients of the leucine and glycine amide protons and vicinal coupling constants 3JHN-C alpha H have been rationalized by the predominance of two gamma-bends in the backbone conformation of [D-Ala2]-leucine enkephalin. The gamma-bend around the D-Ala residue has phi = 80 degrees and psi = 270 degrees, while the one around Phe it has phi = 285 degrees and psi = 90 degrees.  相似文献   

8.
The structure of enkephalin, a small neuropeptide with five amino acids, has been simulated on computers using molecular dynamics. Such simulations exhibit a few stable conformations, which also have been identified experimentally. The simulations provide the possibility to perform cluster analysis in the space defined by potentially pharmacophoric measures such as dihedral angles, side-chain orientation, etc. By analyzing the statistics of the resulting clusters, the probability distribution of the side-chain conformations may be determined. These probabilities allow us to predict the selectivity of [Leu]enkephalin and [Met]enkephalin to the known mu- and delta-type opiate receptors to which they bind as agonists. Other plausible consequences of these probability distributions are discussed in relation to the way in which they may influence the dynamics of the synapse.  相似文献   

9.
Analogs of opioid pentapeptide [D-Ala2,Leu5]enkephalin were prepared using two kinds of N-methylation reactions, namely quaternization and amide-methylation. Quaternization reaction with CH3I-KHCO3 in methanol was applied to the deprotected N-terminal group of the pentapeptide derivatives affording trimethylammonium group-containing analogs. [Me3+Tyr1,D-Ala2,Leu5]enkephalin and its amide were found to show opioid activity on guinea pig ileium assay only slightly lower than the parent unmethylated peptides. Application of amide-methylation reaction using CH3I-Ag2O in DMF to the protected pentapeptide yielded a pentamethyl derivative in which all of the five N atoms were methylated. Deprotection of the derivative gave pentamethyl analogs of [D-Ala2,Leu5]enkephalin, which showed no significant activity on the guinea pig ileum assay and opiate-receptor binding assay.  相似文献   

10.
A cystamine-enkephalin dimer, containing two molecules of [D-Ala2, Leu5] enkephalin cross-linked at the COOH-terminal leucine residue with cystamine, (NH2-CH2-CH2-S-)2, has been synthesized in order to examine directly the dimerization effect of an enkephalin molecule on the opiate receptor interactions. In a comparison of potencies against [3H]-[D-Ala2,D-Leu5] enkephalin (3H-DADLE) and [3H]-[D-Ala2,MePhe4,Gly-ol5] enkephalin (3H-DAGO) as delta and mu tracers, respectively, enkephalin dimer showed a very high affinity, especially for the delta opiate receptors. Dimer was almost threefold more potent than DADLE, which is one of the most utilized delta ligand to date. When the binding affinity of cystamine-dimer was compared with that of its reduced thiol-monomer, namely [D-Ala2,Leu5,cysteamine6] enkephalin, the increment in affinity was four to fivefold for both delta and mu receptors. The results strongly indicate that the dimeric enkephalin is more potent presumably due to the simultaneous interaction with the two binding sites of the opiate receptors.  相似文献   

11.
A photoreactive [D-Ala2, p-N3-Phe4-Met5]enkephalin was synthesized by classical solution peptide synthetic methods. The hydroxysuccinimide ester was used in all the coupling steps in the presence of a weak base, triethylamine. The deprotected enkephalin analogue was purified on high performance liquid chromatography using a Waters, C18 muBondapak reverse phase column and its purity was assessed by thin-layer chromatography. The composition of the analogue was determined and confirmed by elemental analysis and amino acid analysis. Its photoreactivity was demonstrated by the time dependent ultraviolet spectral changes on exposure to light. Competition receptor binding showed that [D-Ala2, p-N3-Phe4-Met5]enkephalin was 4-fold more potent than [D-Ala2, Met5]-enkephalin in competing for binding to the enkephalin binding site. The data presented suggest that this photoreactive enkephalin analogue may be suitable for use in the in situ photoaffinity labeling of the enkephalin receptor.  相似文献   

12.
The amides of Leu5-enkephalin, Met5-enkephalin, and three analogues, D-Ala2,Leu5-enkephalin, (AcO)Tyr1,Met5-enkephalin, and (AcO)Tyr1,D-Ala2,Met5-enkephalin, have been studied by means of 1H NMR spectroscopy in two different solvent systems: Me2SO-d6 and CDCl3. In the latter solvent the peptides were dissolved as complexes with 18-crown-6-ether, a coronand that binds strongly to the NH3+ groups. The crown ether complexation and the apolar solvent were used to simulate the anionic subsite of the receptor and the hydrophobic environment of the receptor cavity, respectively. The very unusual amide proton chemical shifts and their temperature coefficients suggest the presence of folded conformations in CDCl3 for all peptides, consistent with several models of opioid receptors and with the crystal structure of Leu5-enkephalin. The differences among the proposed cyclic conformations of the five peptides may be correlated, in part, with their different biological activity. All peptides in Me2SO-d6 are characterized by complex mixtures of extended fully solvated conformations.  相似文献   

13.
The effects of N- and C-terminal oligoalanine insertions into des-Met5-[D-Ala2]enkephalin amide (I) on the biological activity and spatial structure were examined. The corresponding analogues were obtained by solid-phase synthesis using Sephadex LH-20 ac a polymeric support. Biological activity was assayed via changes in the pain threshold in the rat, body temperature, and also as affinity for opiate receptors. Active analogues were obtained upon modifying the carboxylic group in the tetrapeptide I with di- and tri-D-alanyls. The CD spectra of the C-derivatized analogyes were similar to those of the starting tetrapeptide I and [Met5]enkephalin, whereas the N-derivatized analogues showed essentially different CD spectra.  相似文献   

14.
P W Schiller  B Eggimann  T M Nguyen 《Life sciences》1982,31(16-17):1777-1780
Analogs of dynorphin-(1-13) with modifications in the enkephalin segment were compared with correspondingly modified analogs of [Leu5]enkephalin in the guinea pig ileum (GPI) and mouse vas deferens (MVD) assay as well as in mu- and delta-receptor selective binding assays. The obtained results indicate that a) the enkephalin binding domain of the dynorphin (kappa) receptor has structural requirements which are distinct from those of the enkephalin binding site at the mu-receptor and b) the introduction of an identical conformational constraint in [Leu5]enkephalin and in the enkephalin segment of dynorphin-(1-13) produces a superpotent agonist in both cases. Fluorescence energy transfer measurements with the active [4-tryptophan]analogs of dynorphin-(1-13) and [Leu5]enkephalin and with dynorphin-(1-17) demonstrated a more extended conformation of the N-terminal tetrapeptide segment in [Trp4]dynorphin-(1-13) than in [Trp4, Leu5]enkephalin as well as the absence of an interaction between the N- and C-terminal segments of dynorphin-(1-17).  相似文献   

15.
By using 13C enrichment in [Leu5]-enkephalin, it has been possible to improve the assignment of carbonyl resonances in the nuclear resonance spectrum and to remove some of the ambiguities in the derived phi and chi dihedral angles, thereby providing information about the conformation of this molecule in solution. The combined use of 13C and 1H nuclear magnetic resonance experiments leads to the conclusion that [Leu5]0enkephalin contains a type I beta bend at residues Gly3-Phe4 in dimethyl-d6 sulfoxide (Me2SO0d6) solution. Furthermore, the side chains of Tyr1, Phe4, and Leu5 exist predominantly in one conformation (tg-) in this solvent. A comparison is made between the conformation found in Me2SO-d6 and those determined by X-ray diffraction and conformational energy calculations.  相似文献   

16.
[D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is a synthetic enkephalin analog which contains a sulfhydryl group. DALCE binds with high affinity to delta-receptors, with moderate affinity to mu-receptors, and with negligible affinity to kappa-receptors. Pretreatment of rat brain membranes with DALCE resulted in concentration-dependent loss of delta-binding sites. Using 2 nM [3H][D-Pen2,D-Pen5]enkephalin (where Pen represents penicillamine) to label delta-sites, 50% loss of sites occurred at about 3 microM DALCE. Loss of sites was not reversed by subsequent incubation in buffer containing 250 mM NaCl and 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), conditions which cause dissociation of opiate agonists. By contrast, the enkephalin analogs [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, [D-Pen2,D-Pen5]enkephalin, and [D-Ala2,D-Leu5,Lys6]enkephalin were readily dissociated by NaCl and Gpp(NH)p, producing negligible loss at 3 microM. This suggests that DALCE binds covalently to the receptors. Pretreatment of membranes with the reducing agents dithiothreitol and beta-mercaptoethanol had no effect on opiate binding. Thus, loss of sites required both specific recognition by opiate receptors and a thiol group. The irreversible effect of DALCE was completely selective for delta-receptors. Pretreatment with DALCE had no effect on binding of ligands to mu- or kappa-receptors. The effect of DALCE on delta-binding was: 1) markedly attenuated by inclusion of dithiothreitol in the preincubation buffer, 2) partially reversed by subsequent incubation with dithiothreitol, 3) slightly enhanced when converted to the disulfide-linked dimer, and 4) prevented by blocking the DALCE sulfhydryl group with N-ethylmaleimide or iodoacetamide. These results indicate that DALCE binds covalently to delta-receptors by forming a disulfide bond with a sulfhydryl group in the binding site. The mechanism may involve a thiol-disulfide exchange reaction.  相似文献   

17.
1. The effects of chronic treatment with a dimeric or monomeric penta- or tetrapeptide enkephalin analogue on binding and cyclic AMP (cAMP) accumulation in NG108-15 cells have been studied. 2. When the cells were cultured in the presence of 1 mumol of a pentapeptide analogue (dimer or monomer) for up to 96 hr, binding was reduced by greater than or equal to 90%. 3. In contrast, in the presence of 1 mumol of a tetrapeptide analogue (dimer or monomer), binding was reduced by only less than or equal to 30%. 4. The analogues had varying effects on regulation of cAMP formation. Desensitization, indicated by impaired opioid-mediated inhibition of prostaglandin E1 (PGE1)-stimulated cAMP accumulation, was clearly apparent only for cells pretreated with [D-Ala2,D-Leu5]enkephalin (DADLE), while cells pretreated with [D-Ala2,Leu5-NH-CH2-]2 (DPE2) showed minor impairment. 5. Thus, ligand dimerization appeared to have a modulating effect on regulation of adenylate cyclase activity but not to affect opioid-induced down-regulation.  相似文献   

18.
For the elucidation of structural elements in the opiate receptors, a thiol-containing enkephalin analog [D-Ala2, cysteamine 5]enkephalin, and its dimeric analog were synthesized and evaluated in the radio-ligand receptor binding assays using rat brain membranes. The dimeric analog was very potent in both delta and mu assays. Comparison of receptor affinities of the thiol-containing enkephalin with those of standard mu or delta receptor specific ligands suggested that the mu receptor contains an essential thiol group which may interact with the thiol group at the C-terminus of the enkephalin analog. It also appears that no metal-ion site, postulated for the delta receptors, is present in the delta binding site.  相似文献   

19.
A variety of data support the existence of an opioid receptor complex composed of distinct but interacting mu cx and delta cx binding sites, where "cx" indicates "in the complex." The ability of subantinociceptive doses of [Leu5]enkephalin and [Met5]enkephalin to potentiate and attenuate morphine-induced antinociception, respectively, is thought to be mediated via their binding to the delta cx binding site. [D-Pen2,D-Pen5]Enkephalin also modulates morphine-induced antinociception, but has very low affinity for the delta cx binding site in vitro. In the present study, membranes were depleted of their delta ncx binding sites by pretreatment with the site-directed acylating agent, (3S,4S)-(+)-trans-N-[1-[2-(4-isothiocyanato)phenyl)-ethyl]-3-methy l-4- piperidyl]-N-phenylpropaneamide hydrochloride, which permits selective labeling of the delta cx binding site with [3H][D-Ala2,D-Leu5]enkephalin. The major findings of this study are that with this preparation of rat brain membranes: a) there are striking differences between the delta cx and mu binding sites; and b) both [D-Pen2,D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin exhibit high affinity for the delta cx binding site.  相似文献   

20.
Models of mu- and delta-receptor-bound backbone conformations of enkephalin cyclic analogues containing Phe4 were determined by comparing geometrical similarity among the previously found low-energy backbone structures of [D-Cys2,Cys5]-enkephalinamide, [D-Cys2,D-Cys5]-enkephalinamide, [D-Pen2,L-Pen5]-enkephalin and [D-Pen2,D-Pen5]-enkephalin. The present mu-receptor-bound conformation resembles a beta-I bend in the peptide backbone centred on the Gly3-Phe4 region. Two slightly different models were found for the delta-receptor-bound conformation; both of them are more extended than the mu-receptor-bound conformation and include a gamma-turn (or a gamma-like turn) on the Gly3 residue. Energetically favourable rotamers of Tyr and Phe side chains were also determined for the mu- and delta-conformations. The present models of mu- and delta-conformations share geometrical similarity with the low-energy structures of Leu-enkephalin and the Tyr-D-Lys-Gly-Phe-analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号