首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The fractional composition of lipids was studied in 32 yeast strains belonging to the genera of Rhodotorula Harrison, Lipomyces Lodder et Kreger van Rij and Cryptococcus Kutz. The effect of C/N ratio in the growth medium on the content of various lipid fractions was studied. Lipids of the most studied cultures were found to contain di- and triglycerides, waxes, free fatty acids, sterines, their esters, and phospholipids. The fraction of monoglycerides was also detected in Rhodotorula and three species of Cryptococcus, but not in Lipomyces and Cr. laurentii. If C/N ratio equals 10, the predominant lipid component in Lipomyces is triglycerides, and in Rhodoturula and Cryptococcus phospholipids. The fraction of triglycerides prevailed in all cultures at C/N ratio of 100. The content of phospholipids decreased with an increase of C/N ratio in the medium from 10 to 100.  相似文献   

2.
The native strain Yarrowia lipolytica VKM Y-2373 grown in a complete medium exhibited the maximum lipase activity at the concentration of rapeseed oil of at least 5.0 g/l. In the course of yeast growth, no considerable changes were observed in the glycerol concentration, the proportions of the major free fatty acids formed via oil hydrolysis, or the fatty acid composition of oil. Under nitrogen limitation of cell growth, the accumulation of citric acids reached 77.1 g/l with predominance of isocitric acid at pH 6.0, whereas at pH 4.5, almost equal amounts of citric and isocitric acids were produced. Cultivation of the mutant strain Y. lipolytica N 1 at pH 4.5 resulted in the predominant accumulation of citric acid (66.6 g/l) with an insignificant amount of isocitric acid. In the period of intense acid synthesis, high production of lipase was observed.  相似文献   

3.
The native strain Yarrowia lipolytica VKMY-2373 grown in a complete medium exhibited the maximum lipase activity at the concentration of rapesseed oil of at least 5.0 g/l. In the course of yeast growth, no considerable changes were observed in the glycerol concentration, the proportions of the major free fatty acids formed via oil hydrolysis, or the fatty acid composition of oil. Under nitrogen limitation of cell growth, the accumulation of citric acids reached 77.1 g/l with predominance of isocitric acid at pH 6.0, whereas at pH 4.5, almost equal amounts of citric and isocitric acids were produced. Cultivation of the mutant strain Y. lipolytica N 1 at pH 4.5 resulted in the predominant accumulation of citric acid (66.6 g/l) with an insignificant amount of isocitric acid. In the period of intense acid synthesis, high production of lipase was observed.  相似文献   

4.
In production-scale bioreactors microorganisms are exposed to a continually changing environment. This may cause loss of viability, reduction of the yield of biomass or desired metabolites, and an increase in the formation of by-products. In fed-batch production of baker's yeast, profiles may occur in substrate and oxygen concentrations and in pH. This article deals with the influence of a periodically changing oxygen concentration on the growth of baker's yeast in a continuous culture. Also, influences on the production of ethanol, glycerol, acetic acid, and on the composition of the cells were investigated. It was found that relatively fast fluctuations between oxygen-unlimited and oxygen-limited conditions with a frequency of 1 or 2 min had a distinct influence on the biomass and metabolite production. However, RNA, protein, and carbohydrate contents measured in cells exposed to fluctuations differed little from those in cells from an oxygen-unlimited or an oxygen-limited culture. The respiration and fermentation capacities of cells exposed to fluctuations can be larger than the capacities of cells grown under oxygen-unlimited conditions.  相似文献   

5.
Wang  Zhaojun  Liang  Guijiang  Chen  Wenpu  Qie  Xuejiao  Fu  Liwei  Li  Xiang  He  Zhiyong  Zeng  Maomao  Goff  H. Douglas  Chen  Jie 《Food biophysics》2022,17(3):324-334

The interaction and synergetic effect of soy protein isolate (SPI) and its hydrolysates with different concentrations of monoglycerides were explored at the air-water/oil interfaces in recombined low-fat whipped cream (20%). The creams were made with 20% palm oil, 18% carbohydrate, 0.22% stabilizers, and 0.25–1.00% monoglycerides. The proteins used were native soy protein isolate (NSPI), commercial soy protein isolate (CSPI), soy protein hydrolysates by pepsin (SPHPe), soy protein hydrolysates by papain (SPHPa), and SC (sodium caseinate). Overrun, stability, rheological behavior, and texture of recombined low-fat whipped cream were studied. Results indicated that increasing concentration of monoglycerides was effective in improving the textural, whipping properties, and stability of recombined low-fat whipped cream. Increasing concentration of monoglycerides in the mix prompted the displacement of adsorbed protein from fat globules, built up a firmer structure of fat aggregates, and stabilized the trapped air bubbles in the structure of recombined low-fat whipped cream. At the same level of monoglycerides, SPHPa whipped cream produced a similar overrun, stability, and texture as SC. Due to the high proportion of β-conglycinin in SPHPe, a low degree of fat globule partial coalescence occurred and led to low overrun and weakened structure in recombined low-fat whipped cream.

  相似文献   

6.
Abstract The effect of carbon starvation on growth and poly-β-hydroxybutyrate (PHB) utilization in oxygen-limited chemostat cultures of Rhizobium ORS571 was studied. Under oxygen-limited growth conditions PHB was not degraded. When in a nitrogen-fixing oxygen-limited culture, after stopping the medium supply, the dissolved oxygen concentration was maintained at 10 μM, a slow breakdown of PHB was observed. Addition of ammonia and air to a nitrogen-fixing oxygen-limited culture after the medium supply had been stopped, resulted in the simultaneous utilization of PHB and succinate. The possible use of the energy derived from PHB degradation in Rhizobia bacteria and bacteroids is discussed.  相似文献   

7.
The growth of an oleaginous strain of Yarrowia lipolytica on an industrial fat composed of saturated free fatty acids (stearin) was studied. Lipid accumulation during primary anabolic growth was critically influenced by the medium pH and the incubation temperature. This process was independent of the nitrogen concentration in the culture medium, but was favored at a high carbon substrate level and at a low aeration rate. At pH 6 and a temperature of 28-33 degrees C, 9-12 g/l of dry biomass was produced, whereas significant quantities of lipids were accumulated inside the yeast cells (0.44-0.54 g of lipid per gram of biomass). The strain showed the tendency to degrade its storage lipids, although significant amounts of substrate fat, rich in stearic acid, remained unconsumed in the culture medium. Y. lipolytica presented a strong fatty acid specificity. The fatty acids C12:0, C14:0, and C16:0 were rapidly incorporated and mainly used for growth needs, while C18:0 was incorporated with reduced rates and was mainly accumulated as storage material. Reserve lipids, principally composed of triacylglycerols (55% w/w of total lipids) and free fatty acids (35% w/w), were rich in stearic acid (80% w/w), while negligible amounts of unsaturated fatty acids were detected. When industrial glycerol was used as co-substrate, together with stearin, unsaturated fatty acid concentration in the reserve lipid increased.  相似文献   

8.
Summary The effects of oxidized fat components (free fatty acids from the distillable nonurea adductable fraction) isolated from heated corn oil or heated olive oil on the morphology and growth of heart cells in primary culture were investigated. The free fatty acid fractions isolated from the fresh fats served as controls. Different concentrations of the fat fractions (20, 60, and 100 μg/ml) were added to the medium in the form of an emulsion with bovine serum albumin (Fraction V, poor in unesterified fatty acids). In the cell cultures treated with heated fats, intracellular lipid accumulation, increased cytoplasmic vacuolization, mitotic aberrations, pyknotic cells, and decreased mitosis were observed and were more pronounced in the case of the heated olive oil. These cytotoxic effects increased with higher concentrations of heated fats in the medium. The fresh fats also produced intracellular lipid accumulation, reductions in mitosis, and changes in the nucleus and cytoplasm, at the higher levels. These effects were greater in fresh olive oil-treated cultures. These observations indicate that oxidized fat components interfere physically or biochemically with normal cell functions resulting in pathological changes.  相似文献   

9.
Membrane Lipids of Mycoplasma hominis   总被引:15,自引:10,他引:5  
Essentially all of the lipids of Mycoplasma hominis (200 mug/mg of cell protein) were found to be located in the cell membrane. Over one-half were neutral lipids incorporated from the growth medium and consisting of 43% free cholesterol, 19% esterified cholesterol, 23% triglycerides, 10% free fatty acids, and small amounts of di- and monoglycerides. The polar lipids accounting for about 40% of the total were synthesized by the organisms. Phosphatidylglycerol was the predominant lipid of this fraction. The minor components, tentatively identified as lysophosphatidylglycerol and phosphatidic acid, seem to represent breakdown products of phosphatidylglycerol. No glycolipids were detected. Being unable to synthesize long-chain fatty acids, M. hominis utilized the fatty acids of the growth medium for polar lipid synthesis, preferentially the saturated ones, so that the polar lipids had highly saturated hydrocarbon chains. It is proposed that the large take up of unsaturated neutral lipids and cholesterol from the medium offsets the marked condensing effect of the saturated polar lipids, although electron paramagnetic resonance spectrometry of spin-labeled fatty acids incorporated into the M. hominis membrane indicated that the lipid region is still more rigid than that of the Acholeplasma laidlawii membrane.  相似文献   

10.
Thermograms of an aerobic batch culture of Escherichia coli K-12 in synthetic medium were obtained by using a newly designed mecrocalorimeter. The thermograms reflected sharp changes of metabolic activity in glucose-, nitrogen-, or oxygen-limited cultures. The thermo chemical analysis for each culture condition was done using the data of the heat evolved, the head of combustion of cells, and the elementary analysis of the cells. The efficiency of energy conversion determined experimentally revealed nutritional differences.  相似文献   

11.
Heterologous endo-beta-1,4-xylanase was produced by Pichia stipitis under control of the hypoxia-inducible PsADH2-promoter in a high-cell-density culture. After promoter induction by a shift to oxygen limitation, different aeration rates (oxygen transfer rates) were applied while maintaining oxygen-limitation. Initially, enzyme production was higher in oxygen-limited cultures with high rates of oxygen transfer, although the maximum xylanase activity was not significantly influenced. Amino acid supplementation increased the production of the heterologous endo-beta-1,4-xylanase significantly in highly aerated oxygen-limited cultures, until glucose was depleted. A slight second induction of the promoter was observed in all cultures after the glucose had been consumed. The second induction was most obvious in amino acid-supplemented cultures with higher oxygen transfer rates during oxygen limitation. When such oxygen-limited cultures were shifted back to fully aerobic conditions, a significant re-induction of heterologous endo-beta-1,4-xylanase production was observed. Re-induction was accompanied by ethanol consumption. A similar protein production pattern was observed when cultures were first grown on ethanol as sole carbon source and subsequently glucose and oxygen limitation were applied. Thus, we present the first expression system in yeast with a sequential double-inducible promoter.  相似文献   

12.
The relationship between oxygen concentration and growth rate in the yeast Trichosporon cutaneum was studied. In order to establish the conditions for purely oxygen-limited growth, the cells were first grown in a carbon-limited chemostat, and kinetic parameters determined. The cells were then grown in an oxygen-limited chemostat at different dilution rates yielding different oxygen uptake rates. The steady-state dissolved oxygen tension was found at each dilution rate and the corresponding equilibrium dissolved oxygen tension was found at each dilution rate and the corresponding equilibrium dissolved oxygen concentration determined in the effluent medium. The relationship between oxygen concentration and growth rate followed Monod-type kinetics with an apparent K(O) of 4.38 x 10(-6)M.  相似文献   

13.
Yarrowia lipolytica was cultivated on mixtures of saturated free fatty acids (an industrial derivative of animal fat called stearin), technical glycerol (the main by-product of bio-diesel production facilities), and glucose. The utilization of technical glycerol and stearin as co-substrates resulted in higher lipid synthesis and increased citric acid production than the combination of glucose and stearin. The lipids produced contained significant amounts of stearic acid (50-70%, wt/wt) and lower ones of palmitic (15-20%, wt/wt), oleic (7-20%, wt/wt), and linoleic (2-7%, wt/wt) acid. Single-cell oil having a composition similar to cocoa-butter up to 3.4 g/L was produced, whereas in some cases relatively increased citric acid quantities (up to 14 g/L) were excreted into the growth medium. The microorganism presented a high specificity for lauric, myristic, and palmitic acid, while a discrimination for the stearic acid was observed. As a conclusion, microbial metabolism could be directed by using mixtures of inexpensive saturated fats, glycerol, and glucose as co-substrates, in order to accumulate lipids with predetermined composition, e.g., cocoa-butter equivalents.  相似文献   

14.
微水体系中荧光假单胞菌脂肪酶催化合成单甘酯   总被引:4,自引:0,他引:4  
研究了无溶剂微水体系中荧光假单胞菌脂肪酶 (PFL)催化油脂甘油解合成单甘酯的反应因素以及多温程非均相固液反应对单甘酯产率的影响。以初始体系最低共熔点 (PFL)取代临界温度学说中的油脂初熔点 ,通过考察不同IEP体系的甘油解 ,发现PFL酶促油脂甘油解时存在碳链基质特异性的函数关系 ,即反应物油脂中饱和碳残基的质量百分含量 (C16+C18)与单甘酯产率间符合以下多项式:Y =- 0.0006X3 +0.0592X2-0.8909X+26.753(13%<X<76.5%),式中X为C16+C18,Y为40℃时等温反应条件下的单甘酯产率。IEP为40℃时,最适等温反应条件如下:加水量3%~4.5%,加酶量为500μ/g油酯摩尔比1:2.5-5.0(油酯:甘油)反应温度40℃.实验条件下多步等程序降温反应48h后单甘酯最高产率为81.4%.  相似文献   

15.
Carbon dioxide and oxygen concentrations have a profound effect on the lag period of chemoautotrophically grown Hydrogenomonas eutropha. Minimum lag periods and high growth rates were obtained in shaken flask cultures with a prepared gas mixture containing 70% H(2), 20% O(2), and 10% CO(2). However, excessively long lag periods resulted when the same gas mixture was sparged through the culture. The lag period was shortened in sparged cultures by decreasing both the pO(2) and the pCO(2), indicating that gas medium equilibration had not occurred in shaken cultures. The lag period was completely eliminated at certain concentrations of O(2) and CO(2). The optimum pO(2) was 0.05 atm, but the optimum pCO(2) varied according to the pH of the medium and physiological age of the inoculum. At pH 6.4, the pCO(2) required to obtain immediate growth of exponential, postexponential, and stationary phase inocula at equal specific rates was 0.02, 0.05, and 0.16 atm, respectively. With each 0.3-unit increase in the pH of the medium, a 50% decrease in the CO(2) concentration was needed to permit growth to occur at the same rate. The pCO(2) changes required to compensate for the pH changes of the medium had the net effect of maintaining a constant bicarbonate ion concentration. Initial growth of H. eutropha was therefore indirectly related to pCO(2) and directly dependent upon a constant bicarbonate ion concentration.  相似文献   

16.
The chemical composition of mitochondria obtained from exponentially growing Neurospora can be varied by addition of choline or amino acids to the culture medium. The variation affects the phospholipid to protein ratio, and the density of mitochondria as determined by isopycnic centrifugation in sucrose gradients. These variations have been observed in biochemical mutant strains as well as wild type cultures. In a choline-requiring strain, two levels of choline supplementation to the medium have been defined: a low choline concentration just adequate to support maximal logarithmic growth, and a high choline concentration which permits maximal incorporation of radioactive choline into cellular lipids. Mitochondria isolated from cultures growing at the low choline concentration have one-half the phospholipid to protein ratio of those from high choline cultures, and their density is significantly higher. Artificial mixtures of the two types of mitochondria can be resolved into two populations by isopycnic centrifugation. The concentration of cytochromes (measured by mitochondrial difference spectra) and of malate and succinate dehydrogenases (measured by enzyme activity) were the same in both types of mitochondria, on a protein basis. The results suggest that during growth of the mitochondrial mass, the incorporation of phospholipid and protein components can vary independently. Direct kinetic measurements did indeed show that choline, added to a culture growing at low choline concentration, was incorporated into mitochondrial lipids at a rate faster than the incorporation of protein. The mitochondrial phospholipid to protein ratio can also be influenced by the level of leucine supplementation to a leucine-requiring mutant, so that with leucine concentrations above those required for maximal exponential growth, mitochondria of increasing density and decreasing phospholipid to protein ratio are produced. Additions of choline or amino acids to the minimal medium of wild type cultures influence mitochondrial composition in a manner directly comparable to that observed in biochemical mutant strains. The results suggest that mitochondrial composition, in general, is determined by rates of incorporation of the two major components, phospholipid and protein; that these rates can vary independently in response to precursor concentration in the culture medium; and that they normally operate at a precursor (substrate) concentration below saturation level.  相似文献   

17.
Perfluorodecalin, a perfluorocarbon (PFC), was used in this investigation as a dissolved oxygen carrier in the media of Streptomyces coelicolor cultures. The effects of different concentrations of PFC, PFC emulsified with pluronic F-68 and pluronic alone were investigated in the shake-flask cultures using both defined and complex media. In the defined medium with PFC alone, the maximum biomass and actinorhodin concentrations and the volumetric substrate consumption rates increased with increasing PFC concentration. They decreased dramatically, however, when the PFC concentration exceeded 50% (v/v). Emulsifying the PFC with pluronic F-68 resulted in a significant increase in antibiotic concentration while growth was unaffected. The inclusion of more than 4 g/l pluronic alone in the fermentation medium inhibited the growth. In the complex medium with 40% (v/v) PFC, although the final antibiotic concentration was unaffected, the onset of actinorhodin accumulation was 2 days earlier than that in the control. It was demonstrated that PFC and emulsified PFC did not have any deleterious effects on S. coelicolor cultures.  相似文献   

18.
A chemically defined medium was optimized for the maximum biomass production of recombinant Pichia pastoris in the fermentor cultures using glycerol as the sole carbon source. Optimization was done using the statistical methods for getting the optimal level of salts, trace metals and vitamins for the growth of recombinant P. pastoris. The response surface methodology was effective in optimizing nutritional requirements using the limited number of experiments. The optimum medium composition was found to be 20 g/L glycerol, 7.5 g/L (NH4)2SO4, 1 g/L MgSO4.7H2O, 8.5 g/L KH2PO4, 1.5 mL/L vitamin solution and 20 mL/L trace metal solution. Using the optimized medium 11.25 g DCW/L biomass was produced giving a yield coefficient of 0.55 g biomass/g of glycerol in a batch culture. Chemostat cultivation of recombinant P. pastoris was done in the optimized medium at different dilution rates to determine the kinetic parameters for growth on glycerol. Maximum specific growth rate of 0.23 h(-1) and Monod saturation constant of 0.178 g/L were determined by applying Monod model on the steady state data. Products of fermentation pathway, ethanol and acetate, were not detected by HPLC even at higher dilution rates. This supports the notion that P. pastoris cells grow on glycerol by a respiratory route and are therefore an efficient biomass and protein producers.  相似文献   

19.
Effects of free long-chain fatty acids on thermophilic anaerobic digestion   总被引:3,自引:0,他引:3  
Summary Low concentrations of the long-chain fatty acids oleate and stearate inhibited all steps of the anaerobic thermophilic biogas process during digestion of cattle manure. The lag phase increased when the concentrations of oleate and stearate were 0.2 g/l and 0.5 g/l, respectively, and no growth was found at concentrations of 0.5 g/l for oleate and 1.0 g/l for stearate. The toxic effect of these acids was permanent as growth did not occur when inhibited cultures were diluted to a non-inhibitory concentration. No adaptation to the fatty acids toxicity was observed by pre-exposing the cultures to non-inhibitory concentrations and the inhibitory response was the same as for cultures not pre-exposed to the fatty acids. Oleate was less inhibitory when added as a neutral oil in the form of the glycerol ester. This indicates that it is the free fatty acid that influences the bacterial activity. Correspondence to: B. K. Ahring  相似文献   

20.
AIMS: Quantification of the effects of pH, temperature and nutrient limitations on the growth and leukotoxin (LKT) production parameters of Mannheimia haemolytica in batch and chemostat culture. METHODS AND RESULTS: Mannheimia haemolytica strains OVI-1 and PH12296 were grown aerobically in two semi-defined media. In amino acid-limited cultures, the LKT concentration and yield in terms of biomass (Y(LKT/x)) were up to eightfold greater than in carbon-limited cultures. Supplementing amino acid-limited chemostat cultures with cysteine, glutamine, ferric iron and manganese further enhanced the Y(LKT/x) values up to threefold. Supplementation of an amino acid-limited batch culture of M. haemolytica strain OVI-1 with these nutrients resulted in an LKT concentration of 1.77 g l(-1) that was 45-fold greater than that obtained in RPMI 1640 medium. Aerobiosis enhanced LKT production. High acetic acid concentrations were produced under carbon-sufficient conditions. The highest maximum specific growth rates were recorded in the range of pH 6.8 to 7.8 and 37 to 40 degrees C. CONCLUSIONS: An amino acid-limited culture medium greatly improved LKT production in aerobic batch culture, which could be further enhanced by supplementation with cysteine, glutamine, ferric iron and manganese. SIGNIFICANCE AND IMPACT OF THE STUDY: It was demonstrated that LKT production by M. haemolytica could be dramatically increased through manipulation of the culture medium composition, which could benefit the production of LKT-based vaccines against bovine shipping fever pneumonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号