首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isokinetic plantar flexion: experimental results and model calculations   总被引:1,自引:0,他引:1  
In isokinetic experiments on human subjects, conducted to determine moments that can be exerted about a joint at different angular velocities, joint rotation starts as soon as the moment increases above the resting level. This contraction history differs from the one in experiments on isolated muscle, where the force is allowed to increase to an isometric level before shortening is initiated. The purpose of the present study was to determine the influence of contraction history on plantar flexing moments found during maximal voluntary plantar flexion on an isokinetic dynamometer. In ten subjects, plantar flexing moments were measured as a function of ankle angle at different angular velocities. They were also calculated using a model of the muscle-tendon complex of the human triceps surae. The model incorporates elastic tendinous tissue in series with muscle fibers. The input of the model consists of time histories of active state (the force generating capacity of contractile elements) and shortening velocity of the muscle-tendon complex. Different time courses of active state were offered at fixed length of the muscle-tendon complex. The time course yielding a close match between the calculated rise of plantar flexing moment and the rise measured during fixed angle contractions was used to calculate moment-angle curves for isokinetic plantar flexion. The active state value reached when a peak occurred in calculated moment-angle curves was found to be lower if the angular velocity was made higher. Comparing measured and calculated results, it was concluded that moment-angular velocity diagrams determined in studies of isokinetic plantar flexion in human subjects reflect not only the influence of shortening velocity of contractile elements on the force which can be produced by plantar flexors.  相似文献   

2.
A model of the human triceps surae muscle-tendon complex applied to jumping   总被引:1,自引:0,他引:1  
The purpose of this study was to gain more insight into the behavior of the muscle-tendon complex of human m. triceps surae in jumping. During one-legged vertical jumps of ten subjects ground reaction forces as well as cinematographic data were registered, and electromyograms were recorded from m. soleus and m. gastrocnemius. A model was developed of m. triceps surae, incorporating assumptions concerning dimensions, architecture, force-length and force-velocity relationships of muscle fibers, as well as assumptions concerning dimensions and elastic behavior of tendinous tissue in series with the muscle fibers. The velocity with which origin approaches insertion (V OI) was calculated for m. soleus and m. gastrocnemius using cine film data, and served as input of the model. During the last part of the push-off phase EMG-levels were found to be more or less constant, V OI of m. soleus and m. gastrocnemius rapidly increased, and the plantar flexing moment obtained by solving equations concerning a free body diagram of the foot rapidly declined. A similar decline was observed in the plantar flexing moment obtained by multiplying force calculated with help of the model by estimated moment arm at the ankle. As a result of the decline of exerted force tendon length decreases. According to the model the shortening velocity of tendon reaches higher values than that of muscle fibers. The results of a kinetic analysis demonstrate that during the last part of the push-off phase a combination of high angular velocities with relatively large plantar flexing moments is required. It is concluded that without a compliant tendon m. triceps surae would not be able to satisfy this requirement.  相似文献   

3.
Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.  相似文献   

4.
Electromechanical delay (EMD) is the time delay between the onset of muscle activity and the onset of force/joint torque. This delay appears to be linked to muscular contraction efficiency. However, to our knowledge, limited evidence is available regarding the magnitude of the EMD in stroke-impaired muscles. Accordingly, this study aims to quantify the EMD in both paretic and non-paretic triceps surae muscles of chronic hemispheric stroke survivors, and to investigate whether the EMD is related to voluntary force-generating capacity in this muscle group. Nine male chronic stroke survivors were asked to perform isometric plantarflexion contractions at different force levels and at different ankle joint angles ranging from maximum plantarflexion to maximum dorsiflexion. The surface electromyograms were recorded from triceps surae muscles. The longest EMD among triceps surae muscles was chosen as the EMD for each side. Our results revealed that the EMD in paretic muscles was significantly longer than in non-paretic muscles. Moreover, both paretic and non-paretic muscles showed a negative correlation between the EMD and maximum torque-generating capacity. In addition, there was a strong positive relationship between the EMD and shear wave speed in paretic muscles as well as a negative relationship between the EMD and passive ankle joint range of motion. These findings imply that the EMD may be a useful biomarker, in part, associated with contractile and material properties in stroke-impaired muscles.  相似文献   

5.
The purpose of this study was to clarify how foot deformation affects the relationship between triceps surae muscle-tendon unit (MTU) length and ankle joint angle. For six women and six men a series of sagittal magnetic resonance (MR) images of the right foot were taken, and changes in MTU length (the displacement of the calcaneal tuberosity), foot arch angle, and ankle joint angle were measured. In the passive session, each subject's ankle joint was secured at 10° dorsiflexed position, neutral position (NP), and 10° and 20° plantar flexed positions while MR images were acquired. In the active session, each subject was requested to perform submaximal isometric plantar flexions (30%, 60%, and 80% of voluntary maximum) at NP. The changes in MTU length in each trial were estimated by two different formulae reported previously. The changes of the measured MTU length as a function of ankle joint angles observed in all trials of the active session were significantly (p<0.05) larger than corresponding values in the passive session and by the estimation formulae. In the passive session, MTU length changes were significantly smaller than the estimated values when the ankle was plantar flexed. The foot arch angle increased as the contraction level increased from rest (117 ± 4°) to 80% (125 ± 3°), and decreased as the ankle was positioned further into plantar flexion in the passive session (115 ± 3°). These results indicate that foot deformation profoundly affects the triceps surae MTU length-ankle joint angle relationship during plantar flexion.  相似文献   

6.
The purpose of this study was to investigate the relationships between the ankle joint angle and maximum isometric force of the toe flexor muscles. Toe flexor strength and electromyography activity of the foot muscles were measured in 12 healthy men at 6 different ankle joint angles with the knee joint at 90 deg in the sitting position. To measure the maximum isometric force of the toe flexor muscles, subjects exerted maximum force on a toe grip dynamometer while the activity levels of the intrinsic and extrinsic plantar muscles were measured. The relation between ankle joint angle and maximum isometric force of the toe flexor muscles was determined, and the isometric force exhibited a peak when the ankle joint was at 70–90 deg on average. From this optimal neutral position, the isometric force gradually decreased and reached its nadir in the plantar flexion position (i.e., 120 deg). The EMG activity of the abductor hallucis (intrinsic plantar muscle) and peroneus longus (extrinsic plantar muscle) did not differ at any ankle joint angles. The results of this study suggest that the force generation of toe flexor muscles is regulated at the ankle joint and that changes in the length-tension relations of the extrinsic plantar muscle could be a reason for the force-generating capacity at the metatarsophalangeal joint when the ankle joint angle is changed.  相似文献   

7.
The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion.  相似文献   

8.
The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techniques. Following ULLS, volumes of the soleus and the medial gastrocnemius and the maximum isometric ankle plantar flexion (maximum voluntary contraction) decreased by 5.5+/-1.9, 7.5+/-2.7, and 48.1+/-6.1%, respectively. The strain of the aponeurosis along the length of the muscle before the ULLS was 0.3+/-0.3%, ranging from -1.5 to 2.7% in different locations of the aponeurosis. Following ULLS, the mean strain was -6.4+/-0.3%, ranging from -1.6 to 1.3%. The strain distribution of the midregion of the aponeurosis was significantly influenced by the ULLS, whereas the more distal component showed no consistent changes. Achilles tendon strain was not affected by the ULLS. These results raise the issue as to whether these changes in strain distribution affect the functional properties of the triceps surae and whether the probability of strain injuries within the triceps surae increases following chronic unloading in those regions of this muscle complex in which unusual strains occur.  相似文献   

9.
The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90° flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30° plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15° of dorsiflexion with an isokinetic dynamometer at 30°/s and 150°/s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force–length relations and/or to the slackness of tendinous tissues.  相似文献   

10.
The purpose of this study was to test the endurance of the soleus muscle, and to examine the joint position at which it is most active, while simultaneously suppressing the activity of the gastrocnemius. Ten young males performed maximum isometric contraction of the triceps surae for 100 s, and the endurance and plantar flexion torque of this muscle were measured at various angles of the knee and ankle joints. The electromyogram was measured simultaneously and subsequently converted into integrated electromyogram (IEMG) values. With the knee flexed at 130 degrees, the rate of change in IEMG values for the soleus (0.454% x s(-1)) with the ankle in a neutral position was significantly higher than that for the medial and lateral gastrocnemius. Both with the ankle dorsiflexed at 10 degrees and in the neutral position, the rate of change in IEMG for the soleus was significantly higher with the knee flexed at 90 degrees and 130 degrees than with the knee fully extended. With the knee flexed at 90 degrees and 130 degrees, the IEMG activity of the soleus during the initial (5-10 s) and final 5 s tended to be higher than those for the medial and lateral gastrocnemius, regardless of the ankle joint position. We conclude that the position in which the soleus acts most selectively during a sustained maximum isometric contraction of the triceps surae is with the ankle in a neutral position and the knee flexed at 130 degrees.  相似文献   

11.
The purpose of this study was to investigate the influence of wearing figure skating skates on vertical jump performance and interjoint co-ordinations described in terms of sequencing and timing of joint rotations. Ten national to international figure skaters were filmed while performing a squat jump (SJ) on a force platform. Three experimental conditions were successively realized: barefoot (BF), lifting a 1.5 kg weight (LW) corresponding to the skates' mass, attached on the distal extremity of each leg and wearing skates (SK). Jump height, angular kinematics as well as joints kinetics were calculated. Relative to the SJ height reached in the BF condition, SJ performance was significantly decreased by 2.1 and 5.5 cm in the LW and SK conditions, respectively. The restriction of ankle amplitude imposed by wearing skates was found to significantly limit the knee joint amplitude while the hip angular motion was not affected. Neither the skates' mass nor the limited ankle angular motion modified the proximo-distal organization of joint co-ordination observed when jumping barefoot. However, with plantar flexion restriction, the delay between hip and knee extensions increased while it was reduced between knee and ankle extensions. Work output at the knee and ankle joints were significantly lowered when wearing skates. The decrease of work at the knee was shown to result from an early flexing moment causing a premature deceleration of the knee and from a reduction of knee amplitude. Taken together, these results show a minimization of the participation of the knee when plantar flexion is limited. It was proposed that constraining the distal joint causes a reorganization of interjoint co-ordinations and a redistribution of the energy produced by knee extensors to the hip and ankle joints.  相似文献   

12.
The Achilles tendon (AT) moment arm transforms triceps surae muscle forces into a moment about the ankle which is critical for functional activities like walking. Moreover, the AT moment arm changes continuously during walking, as it depends on both ankle joint rotation and triceps surae muscle loading (presumably due to bulging of the muscle belly). Here, we posit that aging negatively effects the architecturally complex AT moment arm during walking, which thereby contributes to well-documented reductions in ankle moment generation during push-off. We used motion capture-guided ultrasound imaging to quantify instantaneous variations in the AT moment arms of young (23.9 ± 4.3 years) and older (69.9 ± 2.6 years) adults during walking, their dependence on triceps surae muscle loading, and their association with ankle moment generation during push-off. Older adults walked with 11% smaller AT moment arms and 11% smaller peak ankle moments during push-off than young adults. Moreover, as hypothesized, these unfavourable changes were significantly and positively correlated (r2 = 0.38, p < 0.01). More surprisingly, aging attenuated load-dependent increases in the AT moment arm (i.e., those between heel-strike and push-off at the same ankle angle); only young adults exhibited a significant increase in their AT moment arm due to triceps surae muscle-loading. Age-associated reductions in triceps surae volume or activation, and thus muscle bulging during force generation, may compromise the mechanical advantage of the AT during the critical push-off phase of walking in older adults. Thus, strategies to restore and/or improve locomotor performance in our aging population should consider these functionally important changes in musculoskeletal behavior.  相似文献   

13.
Tripping causes a forward angular momentum that has to be arrested to prevent a fall. The support limb, contralateral to the obstructed swing limb, can contribute to an adequate recovery by providing time and clearance for proper positioning of the recovery limb, and by restraining the angular momentum of the body during push-off. The present study investigated how such a contribution is achieved by the support limb in terms of response times and muscle moment generation, in order to provide more insight in the requirements for successful recovery after tripping. Twelve young adults repeatedly walked over a platform in which 21 obstacles were hidden. Each subject was tripped over one of these obstacles during mid-swing in at least five trials. Kinematics, dynamics and muscle activity were measured. Very rapid responses were seen in the muscles of the support limb (approximately 65 ms), causing fast increases in muscle moments in the joints during the primary phase of recovery. Especially a large ankle plantar flexion moment (204 Nm), a knee flexion moment (-54 Nm) and a hip extension moment (52 Nm), generated by triceps surae and hamstring muscle activity, brought about the necessary push-off reaction and simultaneously caused a restraining of the forward angular momentum of the body. These required joint moments could be a problem for the elderly, who might not be able to generate such powerful moments. Strength training in these muscle groups may be indicated in elderly subjects to reduce the risk of falling after a trip.  相似文献   

14.
Synergistic behaviour of triceps surae muscles (medial gastrocnemius-MG, lateral gastrocnemius-LG, soleus-SOL) during sustained submaximal plantarflexions was investigated in this study. Six male subjects were asked to sustain an isometric plantar flexor effort to exhaustion at two different knee angles. Exhaustion was defined as the point when they could no longer maintain the required tension. The loads sustained at 0 and 120 degrees of knee flexion represented 50% and 36% of their maximum voluntary contraction (MVC) respectively. MVC was measured at 0 degree knee flexion. During the contractions, electromyograms (EMG) from the surface of the triceps surae muscles were recorded. Changes in the synergistic behaviour of the triceps surae were assessed via partial correlations of the average EMG (AEMG) between three muscle combinations; MG/LG, MG/SOL, LG/SOL, and correlation between SOL/MG + LG and MG/SOL + LG. The latter combinations were based on either common fibre type or innervation properties. Two types of synergisms were identified: trade-off and coactivation. Trade-off and coactivation synergies were defined by significant (p less than 0.05) positive and negative correlations respectively. Coactivation synergism was found to occur predominantly under conditions of high load or reduced length of the triceps surae, and increased with the duration of the contraction. Trade-off synergism was evident when the muscles were at their optimum length and the loads sustained were submaximum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
PURPOSE: The purpose of this experiment was to evaluate the effects of both muscle length and moment arm (MA) on the electromyographic (EMG) and force output of the triceps surae (TS) muscle. RELEVANCE: It is well recognized that changes in muscle length affect both the muscle's force generating capacity as well as its twitch speed. This relationship is well established in animal preparations. Contrary to animal experiments where length can be directly manipulated in isolated muscles, human experiments require that all muscle length changes be secondary to changes in a joint angle. Such experimental manipulations therefore produce changes in not only muscle length, but also in the muscle's MA. The relative effect of muscle length and MA changes on muscle EMG has not been determined in previous experiments. METHODS: This study was executed in two phases. First, using fresh human cadaver lower limbs, data were gathered describing the relationship between knee and ankle angle changes for maintenance of a constant TS muscle length, while its MA at the ankle joint has been changed. In the second phase of the study, results obtained from phase one were applied to 10 healthy adult human subjects to measure the EMG (surface and fine wire) activity of TS at three different conditions: when both length and MA were shortened, when muscle length was decreased given a constant MA and when MA was shortened given a constant muscle length. RESULTS: A significant increase in muscle activity was found as both the length and MA of TS muscle were shortened. A similar pattern of increased muscle activity was observed when the MA was shortened given a constant muscle length. No significant change in TS activity was found when muscle length was shortened, given a constant MA at the ankle joint. CONCLUSIONS: The findings of this study indicate that changes in the Achilles tendon MA predominate over the muscle length variations in determining the level of TS activity when generating plantar flexion torque.  相似文献   

16.
This article describes an easy to use test equipment for measuring the isometric force in the ankle joints in dorsiflexion and plantar flexion. The combination of the test equipment for measuring the voluntary maximal isometric muscle force in the ankle joint, the surface electromyograms and the motion analysis of the measured leg allow an objective comparison of the strength of the muscular force between the left and right leg. It might be also used as a control setup during rehabilitation after surgical treatment or injuries.  相似文献   

17.
In explosive movements involving the lower extremity elastic recoil and transportation of power from knee to ankle via m. gastrocnemius allow power output about the ankle to reach values over and above the maximum power output of the plantar flexors. The object of this study was to estimate the relative power and work contributions of these two mechanisms for the push-off phase in one-legged jumping. During jumps of ten subjects ground reaction forces and cinematographic data were recorded. The data were used for a kinematic and kinetic analysis of the jumps yielding, among other variables, the velocity with which origins of m. soleus and m. gastrocnemius approach insertion (V OI), and net power output about the ankle (P A). V OI of m. soleus and m. gastrocnemius were imposed upon a model of the muscle-tendon complex of m. triceps surae, and power contributions of muscle fibers (P fibers), tendinous structures (P tendon), and transportation (P transported) were calculated. During the last 150 ms before toe-off, P A was found to increase rapidly and to attain an average peak value of 1790 W. The curve obtained by summation of P fibers, P tendon and P transported closely resembled that of P A. On the instant that the latter peaked (50 ms before toe-off) P fibers and P tendon of m. triceps surae contributed 27 and 53% respectively, and P transported contributed 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.  相似文献   

19.
The purpose of this study was to examine the moment generation of the human plantar flexors and the architecture of the gastrocnemius medialis muscle during and after shortening–stretch cycles in vivo. Fourteen male subjects (30 ± 7 years, 177 ± 7 cm, 80 ± 9 kg) performed a series of electro-stimulated shortening–stretch plantar flexion contractions. The shortening–stretch cycles were performed at three constant angular velocities (25°/s, 50°/s, 100°/s), two amplitudes (15° and 25° ankle angle changes) and at two different stimulation frequencies (30 Hz and 85 Hz). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. A three-way analysis of variance (amplitude × velocity × stimulation frequency) and post-hoc test with Bonferroni correction were used to check the amplitude, velocity and stimulation level related effects on moment enhancement (α = 0.05). The results show an ankle joint moment enhancement after shortening–stretch cycles influenced by muscle architectural changes. We found 2–3% isometric ankle joint moment enhancement at steady state, 1.5–2.0 s after the shortening–stretch cycle. However, the observed alteration in muscle architecture after the imposed perturbation, could lead to an underestimation (1–3%) of joint moment enhancement due to the force–length relationship of the triceps surae. Furthermore, the enhancement observed was independent of the shortening–stretch amplitude, velocity and stimulation frequency.  相似文献   

20.
The purpose of this study was to examine the effect of joint angle on the relationship between force and electromyogram (EMG) amplitude and median frequency, in the biceps, brachioradialis and triceps muscles. Surface EMG were measured at eight elbow angles, during isometric flexion and extension at force levels from 10% to 100% of maximum voluntary contraction (MVC). Joint angle had a significant effect on MVC force, but not on MVC EMG amplitude in all of the muscles examined. The median frequency of the biceps and triceps EMG decreased with increasing muscle length, possibly due to relative changes in electrode position or a decrease in muscle fibre diameter. The relationship between EMG amplitude and force, normalised with respect to its maximum force at each angle, did not vary with joint angle in the biceps or brachioradialis muscles over all angles, or in the triceps between 45° and 120° of flexion. These results suggest that the neural excitation level to each muscle is determined by the required percentage of available force rather than the absolute force required. It is, therefore, recommended that when using surface EMG to estimate muscle excitation, force should be normalised with respect to its maximum value at each angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号