首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Band 4.2, which plays an important but poorly understood role in erythrocyte function and survival, is a major component of erythrocyte membranes. Recently, it has been shown that the gene for murine protein band 4.2 colocalizes on chromosome 2 with the murine pallid mutation, which affects the formation or function of intracellular storage granules in melanocytes and platelets and lysosomes in kidney. As a first step in identifying the mutation responsible for the pallid phenotype, we have sequenced the entire normal murine band 4.2 gene. Our results show that the gene for murine band 4.2 is approximately 22 kb in size, with 13 exons and 12 intervening introns. The organization of the mouse band 4.2 gene is identical to that of the human band 4.2 gene and similar to that of the genes for the transglutaminase enzymes, reiterating the membership of protein band 4.2 in the transglutaminase gene superfamily. We also present 3.5 kb of normal murine erythroid band 4.2 cDNA sequence containing an open reading frame of 2073 bp and coding for 691 amino acids. This is the same size as the human erythrocyte protein, with which the murine protein shares a 72% amino acid identity.  相似文献   

2.
Band 4.2 is a major protein of the erythrocyte membrane which has been immunologically detected in a variety of cell types and is apparently essential for normal erythrocyte membrane function. Since band 4.2 has unusual solubility and membrane binding properties and has an N-terminal glycine following the initiating methionine, we explored the possibility that band 4.2 is myristylated. When Sf9 cells infected with a recombinant band 4.2 Baculovirus were incubated with [3H]myristic acid, label became incorporated into recombinant band 4.2 protein and resisted extraction with hydroxylamine. Consistent with N-terminal myristylation, the incorporation of label was dependent upon protein synthesis. The fatty acid covalently bound to recombinant band 4.2 was definitively identified as myristic acid by recovering the fatty acid after hydrolysis of band 4.2 and examining its migration relative to standards in thin layer chromatography. It was determined that native erythrocyte band 4.2 is an N-myristylated protein by reverse phase high performance liquid chromatography detection of an azlactone derivative of N-myristylglycine after mild acid hydrolysis and azlactone derivatization of the purified protein. Study of myristylation of band 4.2, an abundant normal cellular protein, and its role in membrane binding may produce insights relevant to other myristylated cellular proteins.  相似文献   

3.
4.
cDNA clones encoding the human erythrocyte band 7 membrane protein were isolated by immunoscreening from bone marrow and HeLa cell lambda gt 11 cDNA libraries, and their nucleotide sequences were determined. HeLa- and bone marrow cell-derived sequences were identical, except for one nucleotide; the deduced sequence of 287 amino acids was confirmed by sequence identity with peptides of the erythroid protein. Structure analysis assigned band 7 protein to the type Ib transmembrane proteins.  相似文献   

5.
Structure of the murine anion exchange protein   总被引:7,自引:0,他引:7  
A full-length clone encoding the mouse erythrocyte anion exchange protein, band 3, has been isolated from a cDNA library using an antibody against the mature erythrocyte protein. The complete nucleotide sequence has been determined. Substantial homology is evident between the deduced murine amino acid sequence and published sequences of fragments of human band 3 protein. The amino-terminal 420 and the carboxy-terminal 32 residues constitute polar, soluble domains, while the intervening 475 amino acids are likely to be intimately associated with the lipid bilayer. Hydrophobic analysis of this sequence, together with structural studies on the human protein, suggests the possibility of at least 12 membrane spans, predicting that both the amino- and carboxy-termini are intracellular.  相似文献   

6.
Antibodies directed to the cytoplasmic domain of human erythrocyte band 3, the major integral protein of the erythrocyte membrane which is thought to be the main anchoring site of the membrane cytoskeleton, were demonstrated in the present study to react with the membrane of various nonerythroid cells, such as human leucocytes, fibroblasts or human umbilical mesenchyme cells, amniotic epithelium and vascular smooth muscle. In cultured fibroblasts staining was confined to small dots and streaks associated with both the dorsal and ventral cell membrane. In human lymphocytes band 3 antigen accompanied capping of concanavalin A binding surface receptors. The immunoreactive form of band 3 in fibroblasts was shown by immunoblotting studies to be a polypeptide of approximately 60 000 dalton. This polypeptide is immunologically and electrophoretically related to a major immunoreactive form of band 3 naturally occurring in the red blood cell membrane. Considering the recent identification in nonerythroid cells of immunoreactive forms of other major components of the erythrocyte membrane cytoskeleton, the present observation in nucleated cells of a polypeptide related to erythrocyte band 3 may indicate some of the features of erythrocyte membrane architecture are also present in nonerythroid cells.  相似文献   

7.
Band 4.2 is a human erythrocyte membrane protein of incompletely characterized structure and function. Erythrocytes deficient in band 4.2 protein were used to examine the functional role of band 4.2 in intact erythrocyte membranes. Both the lateral and the rotational mobilities of band 3 were increased in band 4.2-deficient erythrocytes compared to control cells. In contrast, the lateral mobility of neither glycophorins nor a fluorescent phospholipid analog was altered in band 4.2-deficient cells. Compared to controls, band 4.2-deficient erythrocytes manifested a decreased ratio of band 3 to spectrin, and band 4.2-deficient membrane skeletons had decreased extractability of band 3 under low-salt conditions. Normal band 4.2 was found to bind to spectrin in solution and to promote the binding of spectrin to ankyrin-stripped inside-out vesicles. We conclude that band 4.2 provides low-affinity binding sites for both band 3 oligomers and spectrin dimers on the human erythrocyte membrane. Band 4.2 may serve as an accessory linking protein between the membrane skeleton and the overlying lipid bilayer.  相似文献   

8.
The cytoplasmic domain of the human erythrocyte membrane protein, band 3 (cdb3), contains binding sites for hemoglobin, several glycolytic enzymes, band 4.1, band 4.2, and ankyrin, and constitutes the major linkage between the membrane skeleton and the membrane. Although erythrocyte cdb3 has been partially purified from proteolyzed red blood cells, further separation of the water-soluble 43-kDa and 41-kDa proteolytic fragments has never been achieved. In order to obtain pure cdb3 for crystallization and site-directed mutagenesis studies, we constructed an expression plasmid that has a tandemly linked T7 promoter placed upstream of the N-terminal 379 amino acids of the erythrocyte band 3 gene. Comparison of several Escherichia coli strains led to the selection of the BL21 (DE3) strain containing the pLysS plasmid as the best host for efficient production of cdb3. About 10 mg of recombinant cdb3 can be easily purified from 4 L of E. coli culture in two simple steps. Comparison of cdb3 released from the red blood cell by proteolysis with recombinant cdb3 reveals that both have the same N-terminal sequence, secondary structure, and pH-dependent conformational change. The purified recombinant cdb3 is also a soluble stable dimer with the same Stokes radius as erythrocyte cdb3. The affinities of the two forms of cdb3 for ankyrin are essentially identical; however, recombinant cdb3 with its unblocked N-terminus exhibits a slightly lower affinity for aldolase.  相似文献   

9.
Protein 4.2 is a major component of the erythrocyte membrane cytoskeleton. Here we show that immunoreactive forms of human (Mr 72,000) and pig (Mr 75,000) protein 4.2 are also associated with the plasma membrane of various nonerythroid cells and tissues, such as platelets, brain, and kidney. Protein 4.2 can be extracted from platelet membranes under the same conditions (pH 11, 1 M KI, 1 M urea) which are required to extract protein 4.2 from the erythrocyte plasma membrane. The demonstration of protein 4.2 in nucleated cells that contain also several other proteins of the erythrocyte membrane cytoskeleton indicates some general principles underlying the molecular construction of the plasma membrane in erythrocytes and nonerythroid cells.  相似文献   

10.
带4.2蛋白是一种重要的红细胞膜蛋白,与红细胞的形态、可变形性及携氧功能有至关重要的联系。它通过与带3蛋白(阴离子通道蛋白)、锚蛋白结合,稳定的连接在细胞膜的内表面,连接着膜骨架网架结构与细胞膜,是膜骨架与脂质双分子层连接的重要纽带。带4.2蛋白的缺失会引起球形或椭圆形红细胞增多症及不同程度的溶血性贫血,严重的情况需要摘除脾脏来进行治疗。近年来研究认为,带4.2蛋白在维持细胞膜骨架的完整性和稳定性方面扮演了重要角色。现对带4.2蛋白结构及功能的研究状况进行综述。  相似文献   

11.
12.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

13.
Monoclonal antibodies to the Mr 31,000 major integral membrane protein of the human erythrocyte band 7 region were used to identify the corresponding polypeptide chain and epitope-carrying fragments on immunoblots. Analysis of the erythrocyte membrane, membrane fractions, and cytosol revealed that the Mr 31,000 band 7 integral membrane protein is unique and not related to any of the other water-soluble or membrane-bound band 7 components. Cross-reacting proteins were identified in the membranes of other mammalian erythrocytes and in cell lines of epithelial and lymphoid origin. Proteolytic digestion of intact human erythrocytes or erythrocyte membranes demonstrated that the band 7 integral membrane protein has an intracellular domain larger than Mr 12,000; it does not have an extracellular one. One of the monoclonal antibodies was employed for the isolation of band 7 integral membrane protein by immunoaffinity chromatography; subsequent Edman degradation revealed a blocked N-terminus.  相似文献   

14.
This report presents an analysis of the phosphorylation of human and rabbit erythrocyte membrane proteins which migrate in NaDodSO4-polyacrylamide gels in the area of the Coomassie Blue-stained proteins generally known as band 3. The phosphorylation of these proteins is of interest as band 3 has been implicated in transport processes. This study shows that there are at least three distinct phosphoproteins associated with the band 3 region of human erythrocyte membranes. These are band 2.9, the major band 3, and PAS-1. The phosphorylation of these proteins is differentially catalyzed by solubilized membrane and cytoplasmic cyclic AMP-dependent and -independent erythrocyte protein kinases. Band 2.9 is present and phosphorylated in unfractionated human and rabbit erythrocyte ghosts but not in NaI- or dimethylmaleic anhydride (DMMA)-extracted membranes. These latter membrane preparations are enriched in band 3 and in sialoglycoproteins. The NaI-extracted ghosts contain residual protein kinase activity which can catalyze the autophosphorylation of band 3 whereas the DMMA-extracted ghosts are usually devoid of any kinase activity. However, both NaI- and DMMA-extracted ghosts, as well as Triton X-100 extracts of the DMMA-extracted ghosts, can be phosphorylated by various erythrocyte protein kinases. The kinases which preferentially phosphorylate the major band 3 protein are inactive towards PAS-1 while the kinases active towards PAS-1 are less active towards band 3. The band 3 protein in the DMMA-extracted ghosts can be cross-linked with the Cu2+ -σ-phenanthroline complex. The cross-linking of band 3 does not affect its capacity to serve as a phosphoryl acceptor nor does phosphorylation affect the capacity of band 3 to form cross-links. In addition to band 2.9, the major band 3 and PAS-1, another minor protein component appears to be present in the band 3 region in human erythrocyte membranes. This protein is specifically phosphorylated by the cyclic AMP-dependent protein kinases isolated from the cytoplasm of rabbit erythrocytes. The rabbit erythrocyte membranes lack PAS-1 and the cyclic AMP-dependent protein kinase substrate.  相似文献   

15.
16.
The organization of erythrocyte membrane lipids and proteins has been studied following the release of cytoplasmic components with the non-ionic detergent Triton X-100. After detergent extraction, a detergent-resistant complex called the erythrocyte cytoskeleton is separated from detergent, solubilized lipid and protein by sucrose buoyant density sedimentation. In cytoskeletons prepared under isotonic conditions all of the major erythrocyte membrane proteins are retained except for the integral protein, glycophorin, which is quantitatively solubilized and another integral glycoprotein, band 3, which is only 60% removed. When cytoskeletons are prepared in hypertonic KCl solutions, band 3 is fully solubilized along with bands 2.1 and 4.2 and several minor components. The resulting cytoskeletons have the same morphology as those prepared in isotonic buffer but they are composed of only three major peripheral proteins, spectrin, actin and band 4.1. We have designated this peripheral protein complex the 'shell' of the erythrocyte membrane, and have shown that the attachment of band 3 to the shell satisfies the criteria for a specific interaction. Although Triton did affect erythrocyte shape, cytoskeleton lipid content and the activity of membrane proteases, there was no indication that Triton altered the attachment of band 3 to the shell. We suggest that band 3 attaches to the shell as part of a ternary complex of bands 2.1, 3 and 4.2.  相似文献   

17.
We have purified the human erythrocyte membrane protein band 4.2 to greater than 85% homogeneity. The protein was extracted from spectrin-actin-depleted inside-out vesicles in a pH 11 medium and purified by gel filtration in the presence of 1 M KI. The purified protein was heterogeneous and had an average S20,w of 5.5 and an average Stokes radius of 82 A. By electron microscopy, the protein appeared heterogeneous in size and shape, having a diameter ranging from 80 to 150 A. The protein bound saturably to band 4.2-depleted red cell inside-out vesicles, and the binding exhibited a concave Scatchard plot. Binding was reduced greater than 90% by proteolytic digestion of membranes. Digestion studies suggested that there are two classes of binding sites for band 4.2 on the cytoplasmic aspect of red cell membranes, one of which is likely to be band 3. The purified 43-kDa cytoplasmic domain of band 3 competed for band 4.2 binding to red cell membranes and could completely abolish binding when added at a concentration of greater than 200 micrograms/ml. The purification of band 4.2 and the characterization of its association with red cell membranes should facilitate the discovery of the function of this major red cell membrane protein.  相似文献   

18.
Band 3, the major transmembrane protein of erythrocytes, mediates the exchange of anions across the membrane and anchors the erythroid membrane skeleton. Proteins immunologically related to Band 3 have been detected in a variety of nonerythroid cells. We have isolated a human cDNA clone that encodes a protein related to but distinct from the erythroid form of Band 3, based on the comparison of the amino acid sequence for the two proteins. The presence of the gene for the Band 3-like protein in a panel of mouse-human somatic cell hybrids containing subsets of human chromosomes correlated with the presence of human chromosome 7. In situ hybridization analysis using the c-DNA for this nonerythroid Band 3 gene further localized the gene to region 7q35----7q36 of human metaphase chromosomes.  相似文献   

19.
20.
In this study, we found that Hg2+ and Cd2+ enhanced the phosphorylation of human erythrocyte membranous proteins, especially band 4.2 protein, which was hardly phosphorylated in the absence of the metal ions. p-Chloromercuribenzenesulfonate and p-chloromercuribenzoate had effects similar to those of Hg2+ and Cd2+ on band 4.2 protein phosphorylation, while other metal ions and sulfhydryl agents, such as N-ethylmaleimide, 5,5'-dithiobis-(2-nitrobenzoic acid), or iodoacetate, did not. The Hg2+-stimulated phosphorylation of band 4.2 protein required a millimolar concentration of Mg2+, and it was inhibited by Ca2+ dose-dependently. Phosphoserine was identified from a hydrolysate of the phosphorylated band 4.2 protein by high-voltage electrophoresis. A specific protein inhibitor against cAMP-dependent protein kinase decreased the Hg2+-stimulated phosphorylation of band 4.2 protein. This protein had more binding sites for 203Hg2+ than any other membrane proteins. A spectrin complex from the Hg2+-treated membranes contained the band 4.2 protein, which was not detected in the complex from untreated membranes. Furthermore, protein kinase, which could phosphorylate the band 4.2 protein, was also contained in the cytoskeletal fraction from the Hg2+-treated membranes. These results suggest that Hg2+ may bind certain sulfhydryl groups of band 4.2 and other proteins to make band 4.2 protein susceptible to the endogenous cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号