首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the mechanisms of uptake of 2-chlorobenzoate (2-CBa) and 2-hydroxybenzoate (2-HBa) by Pseudomonas huttiensis strain D1. Uptake was monitored by assaying intracellular accumulation of 2-[UL-ring-14C]CBa and 2-[UL-ring-14C]HBa. Uptake of 2-CBa showed substrate saturation kinetics with an apparent Km of 12.7 ± 2.6 μM and a maximum velocity (Vmax) of 9.76 ± 0.78 nmol min−1 mg of protein−1. Enhanced rates of uptake were induced by growth on 2-CBa and 2-HBa, but not by growth on benzoate or 2,5-di-CBa. Intracellular accumulations of 2-CBa and 2-HBa were 109- and 42-fold greater, respectively, than the extracellular concentrations of these substrates and were indicative of uptake mediated by a transporter rather than driven by substrate catabolism (“metabolic drag”). Results of competitor screening tests indicated that the substrate range of the transporter did not include other o-halobenzoates that serve as growth substrates for strain D1 and for which the metabolism was initiated by the same dioxygenase as 2-CBa and 2-HBa. This suggested that multiple mechanisms for substrate uptake were coupled to the same catabolic enzyme. The preponderance of evidence from tests with metabolic inhibitors and artificial electrochemical gradients suggested that 2-CBa uptake was driven by ATP hydrolysis. If so, the 2-CBa transporter would be the first of the ATP binding cassette type implicated in uptake of haloaromatic acids.  相似文献   

2.
Rates of Microbial Metabolism in Deep Coastal Plain Aquifers   总被引:15,自引:9,他引:6       下载免费PDF全文
Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C] acetate were 9.4 × 10−3 to 2.4 × 10−1 for the Black Creek aquifer, 1.1 × 10−2 for the Middendorf aquifer, and <7 × 10−5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10−4 to 10−6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10−4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.  相似文献   

3.
To better understand the ecological significance of pressure effects on bacteria in the abyssobenthic boundary layer, experimental suspensions of sediments and sinking particulates were prepared from samples collected in boxcore and bottom-moored sediment traps at two stations (depth, 4,470 and 4,850m) in the Demerara abyssal plain off the coast of Brazil. Replicate samples were incubated shipboard at 3°C and at both atmospheric and deep-sea pressures (440 or 480 atm [4.46 × 104 or 4.86 × 104 kPa]) following the addition of [14C]glutamic acid (<10 μg liter−1) or yeast extract (0.025%) and the antibiotic nalidixic acid (0.002%). In seven of the eight samples supplemented with isotope, a barophilic microbial response was detected, i.e., substrate incorporation and respiration were greater under in situ pressure than at 1 atm (101.3 kPa). In the remaining sample, prepared from a sediment trap warmed to 24°C before recovery, pressure was observed to inhibit substrate utilization. Total bacterial counts by epifluorescence microscopy decreased with depth in each sediment core, as did utilization of glutamic acid. Significant percentages of the total bacterial populations in cold sediment trap samples (but not the prewarmed one or any boxcore sample) were abnormally enlarged and orange fluorescing after incubation with yeast extract and nalidixic acid under deep-sea conditions. Results indicated that in the deep sea, barophilic bacteria play a predominant role in the turnover of naturally low levels of glutamic acid, and the potential for intense microbial activity upon nutrient enrichment is more likely to occur in association with recently settled particulates, especially fecal pellets, than in buried sediments.  相似文献   

4.
The short-term effects of temperature on methanogenesis from acetate or CO2 in a thermophilic (58°C) anaerobic digestor were studied by incubating digestor sludge at different temperatures with 14C-labeled methane precursors (14CH3COO or 14CO2). During a period when Methanosarcina sp. was numerous in the sludge, methanogenesis from acetate was optimal at 55 to 60°C and was completely inhibited at 65°C. A Methanosarcina culture isolated from the digestor grew optimally on acetate at 55 to 58°C and did not grow or produce methane at 65°C. An accidental shift of digestor temperature from 58 to 64°C during this period caused a sharp decrease in gas production and a large increase in acetate concentration within 24 h, indicating that the aceticlastic methanogens in the digestor were the population most susceptible to this temperature increase. During a later period when Methanothrix sp. was numerous in the digestor, methanogenesis from 14CH3COO was optimal at 65°C and completely inhibited at 75°C. A partially purified Methanothrix enrichment culture derived from the digestor had a maximum growth temperature near 70°C. Methanogenesis from 14CO2 in the sludge was optimal at 65°C and still proceeded at 75°C. A CO2-reducing Methanobacterium sp. isolated from the digestor was capable of methanogenesis at 75°C. During the period when Methanothix sp. was apparently dominant, sludge incubated for 24 h at 65°C produced more methane than sludge incubated at 60°C, and no acetate accumulated at 65°C. Methanogenesis was severely inhibited in sludge incubated at 70°C, but since neither acetate nor H2 accumulated, production of these methanogenic substrates by fermentative bacteria was probably the most temperature-sensitive process. Thus, there was a correlation between digestor performance at different temperatures and responses to temperature by cultures of methanogens believed to play important roles in the digestor.  相似文献   

5.
1. Rates of entry and oxidation of a range of metabolites have been measured in tracheostomized sheep (diet, 800g. of lucerne chaff and 100g. of maize/day) by combining isotope-dilution techniques with the continuous measurement of total respiratory gas exchange, and 14CO2 production during the intravenous or intraruminal infusion of 14C-labelled substrates. 2. Mean entry rates in fed and starved (24hr.) sheep respectively, expressed as mg./min./kg. body wt.0·75, were: glucose, 5·0 (range 4·8–5·1, 2 observations) and 3·8 (3·2–4·2, 4); acetate, 10·8 (9·1–13·5, 4) and 5·8 (1); d(−)-β-hydroxybutyrate, 1·4 (1) and 1·5 (0·8–2·4, 4); palmitate, oleate and stearate (starved sheep only) 1·0 (0·6–1·9, 7), 0·9 (0·2–1·6, 10) and 0·9 (0·5–1·1, 11) respectively. 3. Production rates of propionate and butyrate in continuously feeding sheep were 6·4 (4·7–8·3, 4) and 4·3 (3·4–6·1, 4) mg./min./kg.0·75 respectively, and in starved (24hr.) sheep were 2·5 (2·2–2·9, 2) and 1·0 (0·8–1·2, 2) mg./min./kg.0·75 respectively. 4. Calculated terminal values for the specific radioactivity of respiratory 14CO2 during measurements of entry rates and production rates were used to calculate the contributions of individual substrates to overall oxidative metabolism. Mean values for fed and starved sheep respectively were: glucose, 9·1 (8·6–9·6, 2) and 11·2 (5·9–15·1, 4)%; acetate, 31·6 (26·8–38·1, 4) and 22·1 (1)%; d(−)-β-hydroxybutyrate, 10·4 (1) and 4·8 (1·9–7·7, 4)%; propionate, 23·0 (13·8–29·9, 4) and 7·1 (6·8–7·4, 2)%; butyrate, 16·5 (13·7–20·5, 4) and 5·3 (5·2–5·3, 2)%; palmitate, oleate and stearate (starved sheep only), 4·7 (2·0–7·7, 7), 4·0 (1·2–6·6, 10) and 4·4 (3·8–5·8, 9)% respectively. The sum of these values for individual substrates in fed and starved sheep, excluding that of β-hydroxybutyrate and after correction of the glucose value for the known interrelations of this substrate with propionate, accounted for 76% and 58% respectively of total production of carbon dioxide. 5. Calculations based on the proportion of substrate entry directly oxidized indicated that the substrates studied accounted for 63% (fed sheep) and 43% (starved sheep) of total energy expenditure measured by oxygen uptake. The contribution of β-hydroxybutyrate was excluded, and corrections were made for glucose–propionate interrelations, and for the different rates of oxidation of the methyl and carboxyl fragments of acetate. 6. The present results have been combined with those obtained earlier in this Laboratory to examine the relationships between rates of substrate entry and oxidation, and concentrations of substrate in blood. Rates of entry of acetate, glucose, d(−)-β-hydroxybutyrate, palmitate and oleate (but not stearate) were well correlated with concentration in blood, and substrate contribution to production of carbon dioxide showed a similar correlation to blood concentration, except with glucose. 7. It was concluded that the general technique is of potential value in providing valid quantitative parameters of animal metabolism.  相似文献   

6.
The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its “active-site” residues—glutamate 14 (Glu14) from each subunit—must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with 1H-15N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states.  相似文献   

7.
The fates and the rates of metabolism of acetate, trimethylamine, methylamine, and methanol were examined to determine the significance of these compounds as in situ methane precursors in surface sediments of an intertidal zone in Maine. Concentrations of these potential methane precursors were generally <3 μM, with the exception of sediments containing fragments of the seaweed Ascophyllum nodosum, in which acetate was 96 μM. [2-14C]acetate turnover in all samples was rapid (turnover time <2 h), with 14CO2 as the primary product. [14C]trimethylamine and methylamine turnover times were slower (>8 h) and were characterized by formation of both 14CH4 and 14CO2. Ratios of 14CH4/14CO2 from [14C]trimethylamine and methylamine in uninhibited sediments indicated that a significant fraction of these substrates were catabolized via a non-methanogenic process. Data from inhibition experiments involving sodium molybdate and 2-bromoethanesulfonic acid supported this interpretation. [14C]methanol was oxidized relatively slowly compared with the other substrates and was catabolized mainly to 14CO2. Results from experiments with molybdate and 2-bromoethanesulfonic acid suggested that methanol was oxidized primarily through sulfate reduction. In Lowes Cove sediments, trimethylamine accounted for 35.1 to 61.1% of total methane production.  相似文献   

8.
Kinetics of Perchlorate- and Chlorate-Respiring Bacteria   总被引:3,自引:2,他引:3       下载免费PDF全文
Ten chlorate-respiring bacteria were isolated from wastewater and a perchlorate-degrading bioreactor. Eight of the isolates were able to degrade perchlorate, and all isolates used oxygen and chlorate as terminal electron acceptors. The growth kinetics of two perchlorate-degrading isolates, designated “Dechlorosoma” sp. strains KJ and PDX, were examined with acetate as the electron donor in batch tests. The maximum observed aerobic growth rates of KJ and PDX (0.27 and 0.28 h−1, respectively) were only slightly higher than the anoxic growth rates obtained by these isolates during growth with chlorate (0.26 and 0.21 h−1, respectively). The maximum observed growth rates of the two non-perchlorate-utilizing isolates (PDA and PDB) were much higher under aerobic conditions (0.64 and 0.41 h−1, respectively) than under anoxic (chlorate-reducing) conditions (0.18 and 0.21 h−1, respectively). The maximum growth rates of PDX on perchlorate and chlorate were identical (0.21 h−1) and exceeded that of strain KJ on perchlorate (0.14 h−1). Growth of one isolate (PDX) was more rapid on acetate than on lactate. There were substantial differences in the half-saturation constants measured for anoxic growth of isolates on acetate with excess perchlorate (470 mg/liter for KJ and 45 mg/liter for PDX). Biomass yields (grams of cells per gram of acetate) for strain KJ were not statistically different in the presence of the electron acceptors oxygen (0.46 ± 0.07 [n = 7]), chlorate (0.44 ± 0.05 [n = 7]), and perchlorate (0.50 ± 0.08 [n = 7]). These studies provide evidence that facultative microorganisms with the capability for perchlorate and chlorate respiration exist, that not all chlorate-respiring microorganisms are capable of anoxic growth on perchlorate, and that isolates have dissimilar growth kinetics using different electron donors and acceptors.  相似文献   

9.
Enzymatic activities of aminopeptidase and β-glucosidase were investigated in Antarctic Ross Sea sediments at two sites (sites B and C, 567 and 439 m deep, respectively). The sites differed in trophic conditions related to organic matter (OM) composition and bacterial distribution. Carbohydrate concentrations at site B were about double those at site C, while protein and lipid levels were 10 times higher. Proteins were mainly found in a soluble fraction (>90%). Chloropigment content was generally low and phaeopigments were almost absent, indicating the presence of reduced inputs of primary organic matter. ATP concentrations (as a measure of the living microbial biomass) were significantly higher at site B. By contrast, benthic bacterial densities at site C were about double those at site B. Bacterial parameters do not appear to be “bottom-up controlled” by the amount of available food but rather “top-down controlled” by meiofauna predatory pressure, which was significantly higher at site B. Aminopeptidase and β-glucosidase extracellular enzyme activities (EEA) in Antarctic sediments appear to be high and comparable to those reported for temperate or Arctic sediments and characterized by low aminopeptidase/β-glucosidase ratios (about 10). Activity profiles showed decreasing patterns with increasing sediment depth, indicating vertical shifts in both availability and nutritional quality of degradable OM. Vertical profiles of aminopeptidase activity were related to a decrease in protein concentration and/or to an increase in the insoluble refractory proteinaceous fraction. The highest aminopeptidase activity rates were observed at site C, characterized by much lower protein concentrations. Differences in EEA between sites do not seem to be explained by differences in the in situ temperature (−1.6 and −0.8°C at sites B and C, respectively). Aminopeptidase activity profiles are consistent with the bacterial biomass and frequency of dividing cells. Enzyme substrate affinity was generally dependent upon substrate concentrations. EEA, normalized to bacterial numbers, indicated specific activities comparable to those reported for equally deep sediments at temperate latitudes. Vertical patterns of specific enzymatic activity appeared to be controlled by chloroplastic pigment concentrations that accumulate in the deeper sediment layers. The overall conclusion from the analysis of EEA in Antarctic sediments is that enzyme-dependent transformations of OM proceed at rates similar to those measured in temperate environments. Protein carbon potentially liberated by aminopeptidase activities (12.597 to 26.190 mg of C m−2 day−1) indicates that the whole protein pool could be mobilized within 1.3 to 17 h. Carbohydrate carbon mobilization (773 to 2,552 mg of C m−2 day−1) is sufficient to turn over the carbohydrate pool within 16 to 20 h. Such rates are 6 to 45 times higher than fluxes of particulate organic proteins and carbohydrates, indicating an “uncoupled hydrolysis” by the Antarctic benthic assemblages, in which bacteria appear to be able to rapidly exploit episodic OM pulses.  相似文献   

10.
Most heterotrophic bacteria assimilate CO2 in various carboxylation reactions during biosynthesis. In this study, assimilation of 14CO2 by heterotrophic bacteria was used for isotope labeling of active microorganisms in pure cultures and environmental samples. Labeled cells were visualized by microautoradiography (MAR) combined with fluorescence in situ hybridization (FISH) to obtain simultaneous information about activity and identity. Cultures of Escherichia coli and Pseudomonas putida assimilated sufficient 14CO2 during growth on various organic substrates to obtain positive MAR signals. The MAR signals were comparable with the traditional MAR approach based on uptake of 14C-labeled organic substrates. Experiments with E. coli showed that 14CO2 was assimilated during both fermentation and aerobic and anaerobic respiration. The new MAR approach, HetCO2-MAR, was evaluated by targeting metabolic active filamentous bacteria, including “Candidatus Microthrix parvicella” in activated sludge. “Ca. Microthrix parvicella” was able to take up oleic acid under anaerobic conditions, as shown by the traditional MAR approach with [14C]oleic acid. However, the new HetCO2-MAR approach indicated that “Ca. Microthrix parvicella,” did not significantly grow on oleic acid under anaerobic conditions with or without addition of NO2, whereas the addition of O2 or NO3 initiated growth, as indicated by detectable 14CO2 assimilation. This is a metabolic feature that has not been described previously for filamentous bacteria. Such information could not have been derived by using the traditional MAR procedure, whereas the new HetCO2-MAR approach differentiates better between substrate uptake and substrate metabolism that result in growth. The HetCO2-MAR results were supported by stable isotope analysis of 13C-labeled phospholipid fatty acids from activated sludge incubated under aerobic and anaerobic conditions in the presence of 13CO2. In conclusion, the novel HetCO2-MAR approach expands the possibility for studies of the ecophysiology of uncultivated microorganisms.  相似文献   

11.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1 compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ~0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C.  相似文献   

12.
In summer, the river Saar in the southwest of Germany exhibits distinct temperature fluctuations from 8°C at the source to nearly 30°C in the middle region. Temperature optima for bacterial plate counts and the uptake velocity of [U-14C]glucose by the natural microbial communities of different regions ranged from 20 to 30°C, which is significantly above the mean annual water temperature. A correlation between temperature optima and different seasons or habitats was not observed. Despite the relatively high temperature optima, the turnover time for glucose was shortest at temperatures around the mean annual water temperature, due to changes in the substrate affinity. At limiting substrate concentrations, the higher substrate affinity at lower temperatures may lead to a higher real activity at in situ temperatures, and a compensatory stabilization of uptake rates at fluctuating temperatures is possible.  相似文献   

13.
In vivo 13C nuclear magnetic resonance spectroscopy was used to elucidate the pathways and the regulation of pyruvate metabolism and pyruvate-lactate cometabolism noninvasively in living-cell suspensions of Propionibacterium freudenreichii subsp. shermanii. The most important result of this work concerns the modification of fluxes of pyruvate metabolism induced by the presence of lactate. Pyruvate was temporarily converted to lactate and alanine; the flux to acetate synthesis was maintained, but the flux to propionate synthesis was increased; and the reverse flux of the first part of the Wood-Werkman cycle, up to acetate synthesis, was decreased. Pyruvate was consumed at apparent initial rates of 148 and 90 μmol · min−1 · g−1 (cell dry weight) when it was the sole substrate or cometabolized with lactate, respectively. Lactate was consumed at an apparent initial rate of 157 μmol · min−1 · g−1 when it was cometabolized with pyruvate. P. shermanii used several pathways, namely, the Wood-Werkman cycle, synthesis of acetate and CO2, succinate synthesis, gluconeogenesis, the tricarboxylic acid cycle, and alanine synthesis, to manage its pyruvate pool sharply. In both types of experiments, acetate synthesis and the Wood-Werkman cycle were the metabolic pathways used most.  相似文献   

14.
Carefully isolated intact spinach chloroplasts virtually free of contamination of other organelles effectively form β-carotene from NaH14CO3 or [U-14C]-3-phosphoglycerate (PGA) under photosynthetic conditions. The photosynthate pool formed in chloroplasts from 1 to 2 millimolar [U-14C]-3-PGA or 3 to 6 millimolar NaH14CO3 was fully sufficient to supply β-carotene synthesis with intermediates for about 1 hour at maximal rates of about 20 nanomoles 14C incorporated per milligram chlorophyll per hour. Fatty acid synthesis remains, under these circumstances, in linear dependence to substrate concentrations with far lower activity. Isotopic dilution of the β-carotene synthesis by adding unlabeled glyceraldehyde 3-phosphate, dihydroxyacetone-P, 3-PGA, 2-PGA, phosphoenolpyruvate, pyruvate, respectively, may be interpreted as a direct substrate flow from photosynthetically fixed CO2 to isopentenyl pyrophosphate synthesizing system. Unlabeled acetate did not dilute β-carotene synthesis. Fatty acid synthesis acted similarly with unlabeled substrates; but it also was diluted by unlabeled acetate. These results indicate a tight linkage of photosynthetic carbon fixation and plastid isoprenoid synthesis.  相似文献   

15.
13C-nuciear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeIed substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-l/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [l,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%. This is consistent with rapid equilibration of alanine with pyruvate derived from glucose and yet little decrease in the specific activity of the large alanine pool.  相似文献   

16.
Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.  相似文献   

17.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

18.
The kinetic parameters Km, Vmax, Tt (turnover time), and v (natural velocity) were determined for H2 and acetate conversion to methane by Wintergreen Lake sediment, using short-term (a few hours) methods and incubation temperatures of 10 to 14°C. Estimates of the Michaelis-Menten constant, Km, for both the consumption of hydrogen and the conversion of hydrogen to methane by sediment microflora averaged about 0.024 μmol g−1 of dry sediment. The maximal velocity, Vmax, averaged 4.8 μmol of H2 g−1 h−1 for hydrogen consumption and 0.64 μmol of CH4 g−1 h−1 for the conversion of hydrogen to methane during the winter. Estimated natural rates of hydrogen consumption and hydrogen conversion to methane could be calculated from the Michaelis-Menten equation and estimates of Km, Vmax, and the in situ dissolved-hydrogen concentration. These results indicate that methane may not be the only fate of hydrogen in the sediment. Among several potential hydrogen donors tested, only formate stimulated the rate of sediment methanogenesis. Formate conversion to methane was so rapid that an accurate estimate of kinetic parameters was not possible. Kinetic experiments using [2-14C]acetate and sediments collected in the summer indicated that acetate was being converted to methane at or near the maximal rate. A minimum natural rate of acetate conversion to methane was estimated to be about 110 nmol of CH4 g−1 h−1, which was 66% of the Vmax (163 nmol of CH4 g−1 h−1). A 15-min preincubation of sediment with 5.0 × 10−3 atm of hydrogen had a pronounced effect on the kinetic parameters for the conversion of acetate to methane. The acetate pool size, expressed as the term Km + Sn (Sn is in situ substrate concentration), decreased by 37% and Tt decreased by 43%. The Vmax remained relatively constant. A preincubation with hydrogen also caused a 37% decrease in the amount of labeled carbon dioxide produced from the metabolism of [U-14C]valine by sediment heterotrophs.  相似文献   

19.
KshA is the oxygenase component of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase involved in the bacterial degradation of steroids. Consistent with its role in bile acid catabolism, KshA1 from Rhodococcus rhodochrous DSM43269 had the highest apparent specificity (kcat/Km) for steroids with an isopropyl side chain at C17, such as 3-oxo-23,24-bisnorcholesta-1,4-diene-22-oate (1,4-BNC). By contrast, the KshA5 homolog had the highest apparent specificity for substrates with no C17 side chain (kcat/Km >105 s−1 m−1 for 4-estrendione, 5α-androstandione, and testosterone). Unexpectedly, substrates such as 4-androstene-3,17-dione (ADD) and 4-BNC displayed strong substrate inhibition (KiS ∼100 μm). By comparison, the cholesterol-degrading KshAMtb from Mycobacterium tuberculosis had the highest specificity for CoA-thioesterified substrates. These specificities are consistent with differences in the catabolism of cholesterol and bile acids, respectively, in actinobacteria. X-ray crystallographic structures of the KshAMtb·ADD, KshA1·1,4-BNC-CoA, KshA5·ADD, and KshA5·1,4-BNC-CoA complexes revealed that the enzymes have very similar steroid-binding pockets with the substrate''s C17 oriented toward the active site opening. Comparisons suggest Tyr-245 and Phe-297 are determinants of KshA1 specificity. All enzymes have a flexible 16-residue “mouth loop,” which in some structures completely occluded the substrate-binding pocket from the bulk solvent. Remarkably, the catalytic iron and α-helices harboring its ligands were displaced up to 4.4 Å in the KshA5·substrate complexes as compared with substrate-free KshA, suggesting that Rieske oxygenases may have a dynamic nature similar to cytochrome P450.  相似文献   

20.
The anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2 production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to “Candidatus Brocadia” and “Candidatus Kuenenia” and two novel unidentified clusters were detected, with “Candidatus Brocadia” comprising 50% of the anammox population. The prevalence of the anammox was confirmed by the quantitative PCR results based on hydrazine synthase (hzsB) genes, which showed that the abundance ranged from 1.16 × 104 to 9.65 × 104 copies per gram of dry weight. The anammox rates measured by the isotope-pairing technique ranged from 0.27 to 5.25 nmol N per gram of soil per hour in these paddy soils, which contributed 0.6 to 15% to soil N2 production. It is estimated that a total loss of 2.50 × 106 Mg N per year is linked to anammox in the paddy fields in southern China, which implied that ca. 10% of the applied ammonia fertilizers is lost via the anammox process. Anammox activity was significantly correlated with the abundance of hzsB genes, soil nitrate concentration, and C/N ratio. Additionally, ammonia concentration and pH were found to be significantly correlated with the anammox bacterial structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号