首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, and U5 involves: (a) migration of the snRNA molecules from the nucleus to the cytoplasm; (b) assembly of a group of common proteins (Sm proteins) and their binding to a region on the snRNAs called the Sm-binding site; and (c) translocation of the RNP back to the nucleus. A first prerequisite for understanding the assembly pathway and nuclear transport of the snRNPs in more detail is the knowledge of all the snRNP proteins that play essential roles in these processes. We have recently observed a previously undetected 69- kD protein in 12S U1 snRNPs isolated from HeLa nuclear extracts under non-denaturing conditions that is clearly distinct from the U1-70K protein. The following evidence indicates that the 69-kD protein is a common, rather than a U1-specific, protein, possibly associating with the snRNP core particles by protein-protein interaction. (a) Antibodies raised against the 69-kD protein, which did not cross-react with any of the Sm proteins B'-G, precipitated not only U1 snRNPs, but also the other spliceosomal snRNPs U2, U4/U6 and U5, albeit to a lower extent. (b) U1, U2, and U5 core RNP particles reconstituted in vitro contain the 69-kD protein. (c) Xenopus laevis oocytes contain an immunologically related homologue of the human 69-kD protein. When U1 snRNA as well as a mutant U1 snRNA, that can bind the Sm core proteins but lacks the capacity to bind the U1-specific proteins 70K, A, and C, were injected into Xenopus oocytes to allow assembly in vivo, they were recognized by antibodies specific against the 69-kD protein in the ooplasm and in the nucleus. The 69-kD protein is under-represented, if present at all, in purified 17S U2 and in 25S [U4/U6.U5] tri-snRNPs, isolated from HeLa nuclear extracts. Our results are consistent with the working hypothesis that this protein may either play a role in the cytoplasmic assembly of the core domain of the snRNPs and/or in the nuclear transport of the snRNPs. After transport of the snRNPs into the nucleus, it may dissociate from the particles as for example in the case of the 17S U2 or the 25S [U4/U6.U5] tri-snRNP, which bind more than 10 different snRNP specific proteins each in the nucleus.  相似文献   

2.
Molecular comparison of monocot and dicot U1 and U2 snRNAs   总被引:2,自引:0,他引:2  
To elucidate differences between the pre-mRNA splicing components in monocots and dicots, we have cloned and characterized several U1 and U2 snRNA sequence variants expressed in wheat seedling nuclei. Primer extension sequencing on wheat and pea snRNA populations has demonstrated that two 5'-terminal nucleotides found in most other U1 snRNAs are missing/modified in many plant U1 snRNAs. Comparison of the wheat U1 and U2 snRNA variants with their counterparts expressed in pea nuclei has defined regions of structural divergence between monocot and dicot U1 and U2 snRNAs. The U1 and U2 snRNA sequences involved in RNA:RNA interaction with pre-mRNAs are absolutely conserved. Significant differences occur between wheat and pea U1 snRNAs in stem I and II structures implicated in the binding of U1-specific proteins suggesting that the monocot and dicot U1-specific snRNP proteins differ in their binding specificities. Stem III structures, which are required in mammalian systems for splicing complex formation but not for U1-specific protein binding, differ more extensively than stems I, II, or IV. In U2 snRNAs, the sequence differences between these two species are primarily localized in stem III and in stem IV which has been implicated in snRNP protein binding. These differences suggest that monocot and dicot U1 and U2 snRNPs represent distinct entities that may have monocot- and dicot-specific snRNP protein variants associated with each snRNA.  相似文献   

3.
J Hamm  I W Mattaj 《The EMBO journal》1989,8(13):4179-4187
The particle state of U snRNPs was analyzed in oocytes, eggs, embryos and testes from Xenopus laevis. In each case both the relative abundance and the composition of some U snRNPs were found to differ from that of somatic cells. U2 and U6 snRNPs were the most prominent U snRNPs in germ cells and early embryos. In particular, the concentration of U6 snRNA was 10-20 times higher than that of U4 snRNA. Most of the U6 snRNA was not associated with U4 snRNA and migrated on sucrose gradients as a U6 snRNP. The structure of this novel U snRNP was analyzed. A single protein of 50 kd was copurified with U6 snRNPs by a combination of gradient fractionation, immunodepletion with anti-Sm antibodies and immunoprecipitation with anti-6-methyl adenosine antibodies. Although the U6 snRNP did not contain Sm proteins it migrated into the nucleus when U6 snRNA was injected into the cytoplasm of oocytes. Two U6 snRNA elements have been identified. The first is essential for nuclear migration in oocytes, but not for the formation of U4/6 snRNPs in vitro and might be the binding site of a U6-specific protein. The second element was required for interaction with U4 snRNPs but not for nuclear targeting.  相似文献   

4.
U7 snRNPs were isolated from HeLa cells by biochemical fractionation, followed by affinity purification with a biotinylated oligonucleotide complementary to U7 snRNA. Purified U7 snRNPs lack the Sm proteins D1 and D2, but contain additional polypeptides of 14, 50 and 70 kDa. Microsequencing identified the 14 kDa polypeptide as a new Sm-like protein related to Sm D1 and D3. Like U7 snRNA, this protein, named Lsm10, is enriched in Cajal bodies of the cell nucleus. Its incorporation into U7 snRNPs is largely dictated by the special Sm binding site of U7 snRNA. This novel type of Sm complex, composed of both conventional Sm proteins and the Sm-like Lsm10, is most likely to be important for U7 snRNP function and subcellular localization.  相似文献   

5.
The interaction of the U1-specific proteins 70k, A and C with U1 snRNP was studied by depleting gradually U1 snRNPs of the U1-specific proteins by Mono-Q chromatography at elevated temperatures (20-37 degrees C). U1 snRNP species were obtained which were selectively depleted of either protein C, A, C and A, or of all three U1-specific proteins C, A and 70k while retaining the common proteins B' to G. These various types of U1 snRNP particles were used to study the differential accessibility of defined regions of U1 RNA towards nucleases V1 and S1 dependent on the U1 snRNP protein composition. The data indicate that in the U1 snRNP protein 70k interacts with stem/loop A and protein A with stem/loop B of U1 RNA. The presence or absence of protein C did not affect the nuclease digestion patterns of U1 RNA. Our results suggest further that the binding of protein A to the U1 snRNP particle should be independent of proteins 70k and C. Mouse cells contain two U1 RNA species, U1a and U1b, which differ in the structure of stem/loop B, with U1a exhibiting the same stem/loop B sequence as U1 RNA from HeLa cells. When we used Mono Q chromatography to investigate possible structural differences in the two types of U1 snRNPs, we observed that protein A was always preferentially lost from U1b snRNP as compared to U1a snRNPs. This indicates that one consequence of the structural difference between U1a and U1b is a lowering of the strength of binding of protein A to U1b snRNP. The possible functional significance of this finding is discussed with respect to the fact that U1b RNA is preferentially expressed in embryonal cells.  相似文献   

6.
The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.  相似文献   

7.
We have purified the yeast U5 and U6 pre-mRNA splicing small nuclear ribonucleoproteins (snRNPs) by affinity chromatography and analyzed the associated polypeptides by mass spectrometry. The yeast U5 snRNP is composed of the two variants of U5 snRNA, six U5-specific proteins and the 7 proteins of the canonical Sm core. The U6 snRNP is composed of the U6 snRNA, Prp24, and the 7 Sm-Like (LSM) proteins. Surprisingly, the yeast DEAD-box helicase-like protein Prp28 is stably associated with the U5 snRNP, yet is absent from the purified U4/U6 x U5 snRNP. A novel yeast U5 and four novel yeast U4/U6 x U5 snRNP polypeptides were characterized by genetic and biochemical means to demonstrate their involvement in the pre-mRNA splicing reaction. We also show that, unlike the human tri-snRNP, the yeast tri-snRNP dissociated upon addition of ATP or dATP.  相似文献   

8.
The binding of the U1 small nuclear ribonucleoprotein (snRNP)-specific proteins C, A, and 70K to U1 small nuclear RNA (snRNA) was analyzed. Assembly of U1 snRNAs from bean and soybean and a set of mutant Xenopus U1 snRNAs into U1 snRNPs in Xenopus egg extracts was studied. The ability to bind proteins was analyzed by immunoprecipitation with monospecific antibodies and by a protein-sequestering assay. The only sequence essential for binding of the U1-specific proteins was the conserved loop sequence in the 5' hairpin of U1. Further analysis suggested that protein C binds directly to the loop and that the assembly of proteins A and 70K into the RNP requires mainly protein-protein interactions. Protein C apparently recognizes a specific RNA sequence rather than a secondary structural element in the RNA.  相似文献   

9.
Small nuclear (sn) ribonucleoprotein (RNP) U2 functions in the splicing of mRNA by recognizing the branch site of the unspliced pre-mRNA. When HeLa nuclear splicing extracts are centrifuged on glycerol gradients, U2 snRNPs sediment at either 12S (under high salt concentration conditions) or 17S (under low salt concentration conditions). We isolated the 17S U2 snRNPs from splicing extracts under nondenaturing conditions by using centrifugation and immunoaffinity chromatography and examined their structure by electron microscope. In addition to common proteins B', B, D1, D2, D3, E, F, and G and U2-specific proteins A' and B", which are present in the 12S U2 snRNP, at least nine previously unidentified proteins with apparent molecular masses of 35, 53, 60, 66, 92, 110, 120, 150, and 160 kDa bound to the 17S U2 snRNP. The latter proteins dissociate from the U2 snRNP at salt concentrations above 200 mM, yielding the 12S U2 snRNP particle. Under the electron microscope, the 17S U2 snRNPs exhibited a bipartite appearance, with two main globular domains connected by a short filamentous structure that is sensitive to RNase. These findings suggest that the additional globular domain, which is absent from 12S U2 snRNPs, contains some of the 17S U2-specific proteins. The 5' end of the RNA in the U2 snRNP is more exposed for reaction with RNase H and with chemical probes when the U2 snRNP is in the 17S form than when it is in the 12S form. Removal of the 5' end of this RNA reduces the snRNP's Svedberg value from 17S to 12S. Along with the peculiar morphology of the 17S snRNP, these data indicate that most of the 17S U2-specific proteins are bound to the 5' half of the U2 snRNA.  相似文献   

10.
An in vitro reconstitution/splicing complementation system has been developed which has allowed the investigation of the role of mammalian U2 and U5 snRNP components in splicing. U2 or U5 snRNP cores are first reconstituted from purified native snRNP core proteins and snRNA in the absence of cellular extract and are subsequently added to splicing extracts depleted of either U2 or U5 snRNP. When snRNPs reconstituted with HeLa U2 or U5 snRNA were added to U2- or U5-depleted nuclear extract, splicing was complemented. Addition of naked snRNA, on the other hand, did not restore splicing, demonstrating that the core proteins are essential for both U2 and U5 snRNP functions in splicing. Hybrid U2 or U5 snRNPs, reconstituted with core proteins isolated from U1 or U2 snRNPs, were equally active in splicing complementation, indicating that the snRNP core proteins are functionally interchangeable. U5 snRNPs reconstituted from in vitro transcribed U5 snRNA restored splicing to a level identical to that observed with particles reconstituted from authentic HeLa U5 snRNA. In contrast, splicing could not be restored to U2-depleted extract by the addition of snRNPs reconstituted from synthetic U2 snRNA, suggesting that U2 snRNA base modifications are essential for U2 snRNP function.  相似文献   

11.
A Woppmann  J Rinke    R Lührmann 《Nucleic acids research》1988,16(23):10985-11004
Protein-RNA interactions in small nuclear ribonucleoproteins (UsnRNPs) from HeLa cells were investigated by irradiation of purified nucleoplasmic snRNPs U1 to U6 with UV light at 254 nm. The cross-linked proteins were analyzed on one- and two-dimensional gel electrophoresis systems, and the existence of a stable cross-linkage was demonstrated by isolating protein-oligonucleotide complexes from snRNPs containing 32P-labelled snRNAs after exhaustive digestion with a mixture of RNases of different specificities. The primary target of the UV-light induced cross-linking reaction between protein and RNA was protein F. It was also found to be cross-linked to U1 snRNA in purified U1 snRNPs. Protein F is known to be one of the common snRNP proteins, which together with D, E and G protect a 15-25 nucleotide long stretch of snRNAs U1, U2, U4 and U5, the so-called domain A or Sm binding site against nuclease digestion (Liautard et al., 1982). It is therefore likely that the core-protein may bind directly and specifically to the common snRNA domain A, or else to a sub-region of this. The second protein which was demonstrated to be cross-linked to snRNA was the U1 specific protein 70K. Since it has been shown that binding of protein 70K to U1 RNP requires the presence of the 5' stem and loop of U1 RNA (Hamm et al., 1987) it is likely that the 70K protein directly interacts with a sub-region of the first stem loop structure.  相似文献   

12.
The 17S U2 snRNP plays an essential role in branch point selection and catalysis during pre-mRNA splicing. Much remains to be learned about the molecular architecture of the U2 snRNP, including which proteins contact the functionally important 5' end of the U2 snRNA. Here, RNA-protein interactions within immunoaffinity-purified human 17S U2 snRNPs were analyzed by lead(II)-induced RNA cleavage and UV cross-linking. Contacts between the U2 snRNA and SF3a60, SF3b49, SF3b14a/p14 and SmG and SmB were detected. SF3b49 appears to make multiple contacts, interacting with the 5' end of U2 and nucleotides in loops I and IIb. SF3a60 also contacted different regions of the U2 snRNA, including the base of stem-loop I and a bulge in stem-loop III. Consistent with it contacting the pre-mRNA branch point adenosine, SF3b14a/p14 interacted with the U2 snRNA near the region that base pairs with the branch point sequence. A comparison of U2 cross-linking patterns obtained with 17S U2 snRNP versus purified spliceosomal A and B complexes revealed that RNA-protein interactions with stem-loop I and the branch site-interacting region of U2 are dynamic. These studies provide important insights into the molecular architecture of 17S U2 snRNPs and reveal U2 snRNP remodeling events during spliceosome assembly.  相似文献   

13.
The U7 snRNP involved in histone RNA 3' end processing is related to but biochemically distinct from spliceosomal snRNPs. In vertebrates, the Sm core structure assembling around the noncanonical Sm-binding sequence of U7 snRNA contains only five of the seven standard Sm proteins. The missing Sm D1 and D2 subunits are replaced by U7-specific Sm-like proteins Lsm10 and Lsm11, at least the latter of which is important for histone RNA processing. So far, it was unknown if this special U7 snRNP composition is conserved in invertebrates. Here we describe several putative invertebrate Lsm10 and Lsm11 orthologs that display low but clear sequence similarity to their vertebrate counterparts. Immunoprecipitation studies in Drosophila S2 cells indicate that the Drosophila Lsm10 and Lsm11 orthologs (dLsm10 and dLsm11) associate with each other and with Sm B, but not with Sm D1 and D2. Moreover, dLsm11 associates with the recently characterized Drosophila U7 snRNA and, indirectly, with histone H3 pre-mRNA. Furthermore, dLsm10 and dLsm11 can assemble into U7 snRNPs in mammalian cells. These experiments demonstrate a strong evolutionary conservation of the unique U7 snRNP composition, despite a high degree of primary sequence divergence of its constituents. Therefore, Drosophila appears to be a suitable system for further genetic studies of the cell biology of U7 snRNPs.  相似文献   

14.
The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the intermolecular stem I and stem II of the U4/U6 duplex, whose formation is essential for spliceosomal function. However, the mechanism whereby Prp24p and the LSm complex facilitate U4/U6 base-pairing, as well as the exact binding site(s) of Prp24p in the native U6 snRNP, are not well understood. Here, we have investigated the secondary structure of the U6 snRNA in purified U6 snRNPs and compared it with its naked form. Using RNA structure-probing techniques, we demonstrate that within the U6 snRNP a large internal region of the U6 snRNA is unpaired and protected from chemical modification by bound Prp24p. Several of these U6 nucleotides are available for base-pairing interaction, as only their sugar backbone is contacted by Prp24p. Thus, Prp24p can present them to the U4 snRNA and facilitate formation of U4/U6 stem I. We show that the 3' stem-loop is not bound strongly by U6 proteins in native particles. However, when compared to the 3' stem-loop in the naked U6 snRNA, it has a more open conformation, which would facilitate formation of stem II with the U4 snRNA. Our data suggest that the combined association of Prp24p and the LSm complex confers upon U6 nucleotides a conformation favourable for U4/U6 base-pairing. Interestingly, we find that the open structure of the yeast U6 snRNA in native snRNPs can also be adopted by human U6 and U6atac snRNAs.  相似文献   

15.
Architecture of the U5 small nuclear RNA.   总被引:5,自引:1,他引:4       下载免费PDF全文
We have used comparative sequence analysis and deletion analysis to examine the secondary structure of the U5 small nuclear RNA (snRNA), an essential component of the pre-mRNA splicing apparatus. The secondary structure of Saccharomyces cerevisiae U5 snRNA was studied in detail, while sequences from six other fungal species were included in the phylogenetic analysis. Our results indicate that fungal U5 snRNAs, like their counterparts from other taxa, can be folded into a secondary structure characterized by a highly conserved stem-loop (stem-loop 1) that is flanked by a moderately conserved internal loop (internal loop 1). In addition, several of the fungal U5 snRNAs include a novel stem-loop structure (ca. 30 nucleotides) that is adjacent to stem-loop 1. By deletion analysis of the S. cerevisiae snRNA, we have demonstrated that the minimal U5 snRNA that can complement the lethal phenotype of a U5 gene disruption consists of (i) stem-loop 1, (ii) internal loop 1, (iii) a stem-closing internal loop 1, and (iv) the conserved Sm protein binding site. Remarkably, all essential, U5-specific primary sequence elements are encoded by a 39-nucleotide domain consisting of stem-loop 1 and internal loop 1. This domain must, therefore, contain all U5-specific sequences that are essential for splicing activity, including binding sites for U5-specific proteins.  相似文献   

16.
Spliceosomal U6 small nuclear RNA (snRNA) plays a central role in the pre-mRNA splicing mechanism and is highly conserved throughout evolution. Previously, a sequence element essential for both capping and cytoplasmic-nuclear transport of U6 snRNA was mapped in the 5'-terminal domain of U6 snRNA. We have identified a protein in cytoplasmic extracts of mammalian and Trypanosoma brucei cells that binds specifically to this U6 snRNA element. Competition studies with mutant and heterologous RNAs demonstrated the conserved binding specificity of the mammalian and trypanosomal proteins. The in vitro capping analysis of mutant U6 snRNAs indicated that protein binding is required but not sufficient for capping of U6 snRNA by a gamma-monomethyl phosphate. Through RNA affinity purification of mammalian small nuclear ribonucleoproteins (snRNPs), we detected this protein also in nuclear extract as a new specific component of the U6 snRNP but surprisingly not of the U4/U6 or the U4/U5/U6 multi-snRNP. These results suggest that the U6-specific protein is involved in U6 snRNA maturation and transport and may therefore be functionally related to the Sm proteins of the other spliceosomal snRNPs.  相似文献   

17.
During activation of the spliceosome, the U4/U6 snRNA duplex is dissociated, releasing U6 for subsequent base pairing with U2 snRNA. Proteins that directly bind the U4/U6 interaction domain potentially could mediate these structural changes. We thus investigated binding of the human U4/U6-specific proteins, 15.5K, 61K and the 20/60/90K protein complex, to U4/U6 snRNA in vitro. We demonstrate that protein 15.5K is a nucleation factor for U4/U6 snRNP assembly, mediating the interaction of 61K and 20/60/90K with U4/U6 snRNA. A similar hierarchical assembly pathway is observed for the U4atac/U6atac snRNP. In addition, we show that protein 61K directly contacts the 5' portion of U4 snRNA via a novel RNA-binding domain. Furthermore, the 20/60/90K heteromer requires stem II but not stem I of the U4/U6 duplex for binding, and this interaction involves a direct contact between protein 90K and U6. This uneven clustering of the U4/U6 snRNP-specific proteins on U4/U6 snRNA is consistent with a sequential dissociation of the U4/U6 duplex prior to spliceosome catalysis.  相似文献   

18.
An essential step of pre-mRNA spliceosome assembly is the interaction between the snRNPs U4/U6 and U5, to form the [U4/U6.U5] tri-snRNP. While the tri-snRNP protein Prp6p appears to play an important role for tri-snRNP formation in yeast, little is known about the interactions that connect the two snRNP particles in human tri-snRNPs. Here, we describe the molecular characterisation of a 102kD protein form HeLa tri-snRNPs. The 102kD protein exhibits a significant degree of overall homology with the yeast Prp6p, including the conservation of multiple tetratrico peptide repeats (TPR), making this the likely functional homologue of Prp6p. However, while the yeast Prp6p is considered to be a U4/U6-specific protein, the human 102kD protein was found to be tightly associated with purified 20 S U5 snRNPs. This association appears to be primarily due to protein-protein interactions. Interestingly, antibodies directed against the C-terminal TPR elements of the 102kD protein specifically and exclusively immunoprecipitate free U5 snRNPs, but not [U4/U6.U5] tri-snRNPs, from HeLa nuclear extract, suggesting that the C-terminal region of the 102kD protein is covered by U4/U6 or tri-snRNP-specific proteins. Since proteins containing TPR elements are typically involved in multiple protein-protein interactions, we suggest that the 102kD protein interacts within the tri-snRNP with both the U5 and U4/U6 snRNPs, thus bridging the two particles. Consistent with this idea, we show that in vitro translated U5-102kD protein binds to purified 13S U4/U6 snRNPs, which contain, in addition to the Sm proteins, all known U4/U6-specific proteins.  相似文献   

19.
Lsm proteins promote regeneration of pre-mRNA splicing activity   总被引:7,自引:0,他引:7  
Lsm proteins are ubiquitous, multifunctional proteins that affect the processing of most RNAs in eukaryotic cells, but their function is unknown. A complex of seven Lsm proteins, Lsm2-8, associates with the U6 small nuclear RNA (snRNA) that is a component of spliceosome complexes in which pre-mRNA splicing occurs. Spliceosomes contain five snRNAs, U1, U2, U4, U5, and U6, that are packaged as ribonucleoprotein particles (snRNPs). U4 and U6 snRNAs contain extensive sequence complementarity and interact to form U4/U6 di-snRNPs. U4/U6 di-snRNPs associate with U5 snRNPs to form U4/U6.U5 tri-snRNPs prior to spliceosome assembly. Within spliceosomes, disruption of base-paired U4/U6 heterodimer allows U6 snRNA to form part of the catalytic center. Following completion of the splicing reaction, snRNPs must be recycled for subsequent rounds of splicing, although little is known about this process. Here we present evidence that regeneration of splicing activity in vitro is dependent on Lsm proteins. RNP reconstitution experiments with exogenous U6 RNA show that Lsm proteins promote the formation of U6-containing complexes and suggest that Lsm proteins have a chaperone-like function, supporting the assembly or remodeling of RNP complexes involved in splicing. Such a function could explain the involvement of Lsm proteins in a wide variety of RNA processing pathways.  相似文献   

20.
We describe the electron microscopic investigation of purified U4/U6 snRNPs from human and murine cells. The U4/U6 snRNP exhibits two morphological features, a main body approximately 8 nm in diameter and a peripheral filamentous domain, 7-10 nm long. Two lines of evidence suggest that the peripheral domain may consist of RNA and to contain U6 RNA as well as the 5' portion of U4 RNA. (a) Separation of the U4/U6 snRNA interaction regions from the core domains by site-directed cleavage of the U4 snRNA with RNase H gave filament-free, globular core snRNP structures. (b) By immuno and DNA-hybridization EM, both the 5' end of U4 and the 3' end of U6 snRNA were located at the distal region of the filamentous domain, furthest from the core. These results, together with our observation that the filamentous U4/U6 domain is often Y shaped, correlate strikingly with the consensus secondary structure proposed by Brow and Guthrie (1988. Nature (Lond.), 334:213-218), where U4 and U6 snRNA are base paired in such a way that two U4/U6 helices together with a stem/loop of U4 snRNA make up a Y-shaped U4/U6 interaction domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号