首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract IFN-γ and/or LPS induced nitrite production and inhibition of Chlamydia trachomatis (CT) replication in the murine macrophage cell line, RAW264.7. Linear regression analysis demonstrated a strong correlation between nitrite production and inhibition of CT replication (correlation coefficients: −0.93, P < 0.001). l -NMMA specifically inhibited nitrite production and restored CT replication (55–71%). Inducible nitric oxide synthase (iNOS) mRNA was analyzed by Northern and dot blot hybridization with an iNOS cDNA probe. A strong correlation between iNOS mRNA expression and inhibition of CT replication also was observed (correlation coefficient: −0.97, P < 0.05). Furthermore, anti-TNF-α antibody, which completely neutralized biological activity of the secreted TNF-α, neither inhibited nitrite production nor restored CT replication in the LPS- and/or IFN-γ-treated RAW264.7 cells. In mouse peritoneal macrophages treated with IFN-γ, both l -NMMA and anti-TNF-α antibody inhibited nitrite production and restored CT replication. However, l -NMMA and the antibody had no effect upon nitrite production and CT inhibition in LPS-treated peritoneal macrophages. These data indicate that NO production is one mechanism for inhibition of CT replication in IFN-γ-activated murine macrophages.  相似文献   

3.
The mechanism by which lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) induces production of proinflammatory cytokines in murine macrophages, and the role of phosphatidylinositol 3-kinase (PI3-kinase) have not been well investigated. Activation of nuclear factor κB (NF-κB) is initiated by the phosphorylation of the inhibitory subunit, IκB, which targets IκB for degradation and leads to the release of active NF-κB. In this study we demonstrate that 2- (4-morpholinyl)-8-phenylchromone (LY294002), which inhibits PI3-kinase, specifically inhibited degradation of IκBα in RAW264.7 cells stimulated with interferon-γ (IFN-γ) plus LPS or IFN-γ plus PMA. To elucidate the importance of this activity in RAW264.7 cells, we examined tumor necrosis factor-α (TNF-α) and interleukin IL)-6 production in the activated cells. Pretreatment of the cells with LY294002 resulted in the inhibition of TNF-α and IL-6 production in RAW264.7 cells stimulated with IFN-γ plus LPS or IFN-γ plus PMA. Furthermore, LY294002 inhibited the production of nitric oxide NO) in RAW264.7 cells stimulated with IFN-γ plus LPS or IFN-γ plus PMA. LY294002 also inhibited inducible NO synthase (iNOS) mRNA expression in the activated RAW264.7 cells. In conclusion, the present results suggest that PI3-kinase is involved in the signal transduction pathway responsible for LPS- or PMA-mediated TNF-α and IL-6 production, and that LY294002 inhibits NO generation through blocking the degradation of IκBα in activated RAW264.7 cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Mammalian myeloid and epithelial cells express several kinds of antibacterial peptides (alpha-/beta-defensins and cathelicidins) that contribute to the innate host defense by killing invading micro-organisms. In this study we evaluated the LPS-neutralizing activities of cathelicidin peptides human CAP18 (cationic antibacterial proteins of 18 kDa) and guinea pig CAP11 using the CD14(+) murine macrophage cell line RAW264.7 and the murine endotoxin shock model. Flow cytometric analysis revealed that CAP18 and CAP11 inhibited the binding of FITC-conjugated LPS to RAW264.7 cells. Likewise, Northern and Western blot analyses indicated that CAP18 and CAP11 suppressed LPS-induced TNF-alpha mRNA and protein expression by RAW264.7 cells. Interestingly, CAP18 and CAP11 possessed LPS-binding activities, and they strongly suppressed the interaction of LPS with LPS binding protein that mediates the transport of LPS to CD14 to facilitate the activation of CD14(+) cells by LPS. Moreover, when CAP18 and CAP11 were preincubated with RAW264.7 cells, they bound to the cell surface CD14 and inhibited the binding of FITC-LPS to the cells. Furthermore, in the murine endotoxin shock model, CAP18 or CAP11 administration inhibited the binding of LPS to CD14(+) cells (peritoneal macrophages) and suppressed LPS-induced TNF-alpha expression by these cells. Together these observations indicate that cathelicidin peptides CAP18 and CAP11 probably exert protective actions against endotoxin shock by blocking the binding of LPS to CD14(+) cells, thereby suppressing the production of cytokines by these cells via their potent binding activities for LPS and CD14.  相似文献   

5.
Burkholderia mallei is a facultative intracellular pathogen that can cause fatal disease in animals and humans. To better understand the role of phagocytic cells in the control of infections caused by this organism, studies were initiated to examine the interactions of B. mallei with RAW 264.7 murine macrophages. Utilizing modified kanamycin-protection assays, B. mallei was shown to survive and replicate in RAW 264.7 cells infected at multiplicities of infection (moi) of ≤ 1. In contrast, the organism was efficiently cleared by the macrophages when infected at an moi of 10. Interestingly, studies demonstrated that the monolayers only produced high levels of TNF-α, IL-6, IL-10, GM-CSF, RANTES and IFN-β when infected at an moi of 10. In addition, nitric oxide assays and inducible nitric oxide synthase (iNOS) immunoblot analyses revealed a strong correlation between iNOS activity and clearance of B. mallei from RAW 264.7 cells. Furthermore, treatment of activated macrophages with the iNOS inhibitor, aminoguanidine, inhibited clearance of B. mallei from infected monolayers. Based upon these results, it appears that moi significantly influence the outcome of interactions between B. mallei and murine macrophages and that iNOS activity is critical for the clearance of B. mallei from activated RAW 264.7 cells.  相似文献   

6.
Porphyran, extracted from an edible red alga (Porphyra yezoensis), is a sulphated polysaccharide with a wide variety of biological activities including anti-tumour, antioxidant and immuno-modulating activities. In this study, we examined the effect of porphyran on nitric oxide (NO) production in mouse macrophage cell line RAW264.7 cells. Although no significant activity of porphyran to induce NO or tumour necrosis factor-α (TNF-α) production in RAW264.7 cells was observed at the concentration range tested (10-500 μg/ml), it was found for the first time that porphyran inhibited NO production and expression of inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). In the presence of 500 μg/ml porphyran, NO production and expression of iNOS in LPS-treated RAW264.7 cells were completely suppressed. On the other hand, porphyran showed only a marginal effect on the secretion of TNF-α from LPS-stimulated RAW264.7 cells. Electrophoretic mobility shift assay (EMSA) using infrared dye labelled oligonucleotide with nuclear factor-κB (NF-κB) consensus sequence suggested that porphyran inhibited the LPS-induced NF-κB activation. The LPS-inducible nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also inhibited by the pre-treatment with porphyran. Our results obtained in in vitro analysis suggest that porphyran suppresses NO production in LPS-stimulated macrophages by the blocking of NF-κB activation.  相似文献   

7.
8.
Lipopolysaccharides (LPS) are associated with various inflammatory diseases; therefore, the inhibition of LPS-induced nitric oxide (NO) production may have extensive therapeutic applications. We searched for inhibitors of NO production in the LPS-stimulated murine macrophage-like cell line RAW264.7 from MeOH extracts of marine organisms. The MeOH extract of the marine cyanobacterium Okeania sp., collected in Okinawa, Japan, showed inhibitory activity. Biseokeaniamide A was isolated from the MeOH extract by chromatographic separation. Biseokeaniamide A inhibited NO production without cytotoxicity. It reduced inducible nitric oxide synthase levels and suppressed the expression of IL-1β in LPS-stimulated RAW264.7 cells. Biseokeaniamide A did not inhibit IκBα degradation but inhibited IκBα expression. Thus, biseokeaniamide A, a naturally occurring lipopeptide, was identified as a selective inhibitor of LPS signal transduction.  相似文献   

9.
Ahn KS  Noh EJ  Zhao HL  Jung SH  Kang SS  Kim YS 《Life sciences》2005,76(20):2315-2328
Saponins are glycosidic compounds present in many edible and inedible plants. They exhibit potent biological activities in mammalian systems, including several beneficial effects such as anti-inflammation and immunomodulation. In this study, we investigated the effects of seven platycodin saponins on the activities of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. We found that 2"-O-acetyl polygalacin D (S1), platycodin A (S2), platycodin D (S3), and polygalacin D (S6) inhibited LPS-induced NO production in a concentration-dependent manner. Furthermore, these compounds inhibited the expression of LPS-induced iNOS and COX-2 protein and mRNA without an appreciable cytotoxic effect on RAW 264.7 macrophages, and could suppress induction by LPS of pro-inflammatory cytokines such as prostaglandin E2 (PGE2). Treatment with these compounds of RAW 264.7 cells transfected with a reporter construct indicated a reduced level of LPS-induced nuclear factor-kappaB (NF-kappaB) activity and effectively lowered NF-kappaB binding as measured by electrophoretic mobility shift assay (EMSA). The suppression of NF-kappaB activation appears to occur through the prevention of inhibitor kappaB (IkappaB) degradation. In vivo, platycodin saponin mixture (PS) and S3 protected mice from the lethal effects of LPS. The 89% lethality induced by LPS/galactosamine was reduced to 60% and 50% when PS and S3, respectively, were administered simultaneously with LPS. These results suggest that the main inhibitory mechanism of the platycodin saponins may be the reduction of iNOS and COX-2 gene expression through blocking of NF-kappaB activation.  相似文献   

10.
Thapsigargin (TG), an endoplasmic reticular (ER) Ca(2+)-ATPase inhibitor, can increase the intracellular calcium concentration and then deplete the TG-sensitive intracellular Ca(2+) pool. In this study, we investigated the effects of TG on cell viability and tumor necrosis factor-alpha (TNF-alpha) production in the murine macrophage RAW 264.7 cell line. We found that treatment with TG (10-800 nM) induced apoptosis in RAW 264.7 cells in a dose-dependent manner (IC(50), 200 nM). Lipopolysaccharide (LPS, 1 microg/ml) markedly potentiated low concentrations of TG (10-75 nM) in inducing apoptosis (IC(50), 20 nM) as revealed by the DNA ladder. Polymycin B (an LPS receptor antagonist) inhibited the cytotoxic effect induced by LPS plus TG. Although TG, A23187 and ionomycin all definitely increased intracellular Ca(2+) concentrations, neither A23187 nor ionomycin mimicked TG in inducing apoptotic events in LPS-activated RAW 264.7 cells. Moreover, the production of TNF-alpha induced by LPS was profoundly potentiated by TG but not by A23187 or by ionomycin. We conclude from these combined results that TG-sensitive ER Ca(2+) stores play a pivotal role in modulating cell viability and TNF-alpha production. The mutual potentiation between the LPS receptor signaling pathway and the depletion of ER Ca(2+) stores implies the existence of cross-talk between these multiregulatory mechanisms in this murine macrophage RAW 264.7 cell line.  相似文献   

11.
Garlic has been used as a traditional medicine for prevention and treatment of cardiovascular diseases. However, the molecular mechanism of garlic's pharmacological action has not been clearly elucidated. We examined here the effect of garlic extract and its major component, S-allyl cysteine (SAC), on nitric oxide (NO) production by macrophages and endothelial cells. The present study demonstrates that these reagents inhibited NO production through the suppression of iNOS mRNA and protein expression in the murine macrophage cell line RAW264.7, which had been stimulated with LPS and IFNgamma. The garlic extract also inhibited NO production in peritoneal macrophages, rat hepatocytes, and rat aortic smooth muscle cells stimulated with LPS plus cytokines, but it did not inhibit NO production in iNOS-transfected AKN-1 cells or iNOS enzyme activity. These reagents suppressed NF-kappaB activation and murine iNOS promoter activity in LPS and IFNgamma-stimulated RAW264.7 cells. In contrast, these reagents significantly increased cGMP production by eNOS in HUVEC without changes in activity, protein levels, and cellular distribution of eNOS. Finally, garlic extract and SAC both suppressed the production of hydroxyl radical, confirming their antioxidant activity. These data demonstrate that garlic extract and SAC, due to their antioxidant activity, differentially regulate NO production by inhibiting iNOS expression in macrophages while increasing NO in endothelial cells. Thus, this selective regulation may contribute to the anti-inflammatory effect and prevention of atherosclerosis by these reagents.  相似文献   

12.
Arginine deiminase (ADI, E.C. 3.5.3.6), one of the arginine deprivation enzymes, exhibits anticarcinogenic activities. The present study investigated the anti-inflammatory activities of the purified recombinant ADI originating from Lactococcus lactis ssp. lactis ATCC7962 (LADI). LADI dose-dependently inhibited lipopolysaccharide (LPS)-induced upregulation of inducible nitric oxide synthase and the production of nitric oxide in RAW 264.7 murine macrophages. The induction of cyclooxygenase-2 expression and subsequent production of prostaglandin E2 by LPS was also attenuated by LADI treatment. Moreover, LADI inhibited the production of interleukin-6 in LPS-stimulated RAW 264.7 macrophages. These results indicate that LADI exerts anti-inflammatory effects, which may in part explain its chemopreventive potential.  相似文献   

13.
Lysozyme from hen egg has been reported to possess an anti-inflammatory effect. However, little is known about its detailed mechanism. The mechanism of anti-inflammatory effect of lysozyme was examined in this study. When mouse macrophage-like cell line RAW264.7 cells and mouse peritoneal macrophages were activated with lipopolysaccharide (LPS) and then treated with lysozyme, the production of tumor necrosis factor-α and interleukin-6 was significantly suppressed. The effect was induced by suppressing the gene expression levels of both cytokines. Phagocytosis activity of peritoneal macrophages was not altered by the treatment with lysozyme, suggesting that lysozyme shows the anti-inflammatory effect without inhibiting the phagocytotic response of macrophages. In addition, lysozyme inhibited phosphorylation of c-jun N-terminal kinase (JNK) and was taken up by macrophages within 1 h after treatment of the cells with lysozyme. Overall results suggest that lysozyme is taken up intracellularly and suppresses LPS-induced inflammatory responses by inhibiting JNK phosphorylation.  相似文献   

14.
Astaxanthin, a carotenoid without vitamin A activity, has shown anti-oxidant and anti-inflammatory activities; however, its molecular action and mechanism have not been elucidated. We examined in vitro and in vivo regulatory function of astaxanthin on production of nitric oxide (NO) and prostaglandin E2 (PGE2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). Astaxanthin inhibited the expression or formation production of these proinflammatory mediators and cytokines in both lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary macrophages. Astaxanthin also suppressed the serum levels of NO, PGE2, TNF-alpha, and IL-1beta in LPS-administrated mice, and inhibited NF-kappaB activation as well as iNOS promoter activity in RAW264.7 cells stimulated with LPS. This compound directly inhibited the intracellular accumulation of reactive oxygen species in LPS-stimulated RAW264.7 cells as well as H2O2-induced NF-kappaB activation and iNOS expression. Moreover, astaxanthin blocked nuclear translocation of NF-kappaB p65 subunit and I(kappa)B(alpha) degradation, which correlated with its inhibitory effect on I(kappa)B kinase (IKK) activity. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking NF-kappaB activation and as a consequent suppression of IKK activity and I(kappa)B-alpha degradation.  相似文献   

15.
16.
目的:探讨黄芪甲苷对马兜铃酸诱导的RAW264.7细胞向M1型极化的影响,并初步探索其可能的作用机制.方法:分别采用马兜铃酸和脂多糖(LPS)刺激RAW264.7细胞24h,伴或不伴黄芪甲苷进行药物干预处理.采用细胞计数检测试剂盒-8(CCK8)检测细胞活性变化,流式细胞仪检测巨噬细胞分型,酶联免疫吸附试验(ELISA...  相似文献   

17.
18.
Endotoxin (lipopolysaccharide, LPS) is a component of the outer membrane of Gram-negative bacteria and promotes the activation of macrophages and microglia. Although these cells are highly LPS-responsive, they serve unique tissue-specific functions and exhibit different LPS sensitivities. Accordingly, it was of interest to evaluate whether these biological differences reside in variations within LPS signaling pathways between these two cell types. Because the mitogen-activated protein kinases ERK-1 and ERK-2 have been implicated in the control of many immune responses, we tested the concept that they are a key indicator for differences in cellular LPS sensitivity. We observed that murine RAW 264.7 macrophages and murine BV-2 microglial cells both respond to LPS by exhibiting increased IkappaBalpha degradation, enhanced NF-kappaB DNA binding activity, and elevated nitric oxide and interleukin-1beta production. Although LPS potently stimulates ERK activation in RAW 264.7 macrophages, it does not activate ERK-1/-2 in BV-2 microglia. Moreover, antagonism of the MEK/ERK pathway potentiates LPS-stimulated nitric oxide production, suggesting that LPS-stimulated ERK activation can exert inhibitory effects in macrophage-like cells. These data support the idea that ERK activation is not a required function of LPS-mediated signaling events and illustrate that alternative/additional pathways for LPS action exist in these cell types.  相似文献   

19.
A seco-triterpenoid, sentulic acid (SA) isolated from Sandoricum koetjape Merr attenuated nitric oxide (NO) production following co-stimulation with lipopolysaccharide (LPS) and interferon-gamma (IFNγ) in RAW264.7 macrophage cells. The mRNA expression levels of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), IFNγ, interleukin (IL)-6, and IL-12 in LPS/IFNγ co-stimulated RAW264.7 cells also decreased upon SA treatment. To determine the molecular mechanisms underlying the inhibitory effect of SA on LPS/IFNγ-induced NO production in RAW264.7 cells, we further analyzed Toll-like receptor (TLR) signaling by western blotting. The expression of TLR4 and IFN signaling molecules in cells treated with SA was significantly suppressed compared to that in cells not treated with SA. Additionally, SA inhibited the binding of LPS to the TLR4 receptor in RAW264.7 cells stimulated with Alexa Fluor 488-conjugated LPS. These results demonstrate that SA attenuates NO production after LPS/IFNγ co-stimulation in RAW264.7 cells by inhibiting the binding of LPS to TLR4. Our findings suggest that SA is beneficial for the treatment of inflammatory diseases.  相似文献   

20.
Gangliosides are known to specifically inhibit vascular leukocyte recruitment and consequent interaction with the injured endothelium, the basic inflammatory process. In this study, we have found that the production of nitric oxide (NO), a main regulator of inflammation, is suppressed by GM3 on murine macrophage RAW 264.7 cells, when induced by LPS. In addition, GM3 attenuated the increase in cyclooxyenase‐2 (COX‐2) protein and mRNA levels in lipopolysaccharide (LPS)‐activated RAW 264.7 cells in a dose‐dependent manner. Moreover, GM3 inhibited the expression and release of pro‐inflammatory cytokines of tumor necrosis factor‐alpha (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) in RAW 264.7 macrophages. At the intracellular level, GM3 inhibited LPS‐induced nuclear translocation of nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) and activator protein (AP)‐1 in RAW 264.7 macrophages. We, therefore, investigated whether GM3 affects mitogen‐activated protein kinase (MAPK) phosphorylation, a process known as the upstream signaling regulator. GM3 dramatically reduced the expression levels of the phosphorylated forms of ERK, JNK, and p38 in LPS‐activated RAW 264.7 cells. These results indicate that GM3 is a promising suppressor of the vascular inflammatory responses and ganglioside GM3 suppresses the LPS‐induced inflammatory response in RAW 264.7 macrophages by suppression of NF‐κB, AP‐1, and MAPKs signaling. Accordingly, GM3 is suggested as a beneficial agent for the treatment of diseases that are associated with inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号