首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Switzerland's governmental ‘Biodiversity Monitoring’ program is designed to produce factual information on the dynamics of biodiversity within the country for governmental agencies, politicians, and the general public. Monitoring a complex issue like biodiversity in order to give relevant and accurate messages to the general public and politicians within a politically relevant timescale and at moderate cost means focusing on few elements. Because relevant human impacts on biodiversity operate differently at different spatial scales, we need at least three different indicators to observe changes over time in local (‘within‐habitat’), landscape (‘habitat‐mosaic’), and macro‐scale (‘regional’) diversity. To keep things as simple as possible, we use species richness as an indicator for all three levels of diversity, just defining three different spatial scales (10 m2, 1 km2, regions, respectively). Each indicator is based on a number of taxonomic groups which have been selected mainly on the basis of costs and the availability of appropriate methods.  相似文献   

2.
State of environment indicators of 'river health': exploring the metaphor   总被引:9,自引:0,他引:9  
1. Indicators are crucial to many socio-political schemes for portraying environmental influences of society. For example, the OECD model for State of the Environment Reporting uses three different sorts of indicators (pressure, condition, response) to differentiate the present condition of the environment from the anthropogenic pressures upon it and from any societal responses made to alleviate those pressures (thereby improving aspects of the overall condition). 2. These sorts of indicators have a fundamental technical basis in the science supporting their exposition and usage. However, the criteria used in interpreting the indicator values are likely to be set by considerations that go beyond scientific grounds. That is, indicators are socially determined in the end. However, many scientists find it difficult to involve the public in such reporting. 3. Scientists who are uncomfortable with this non-technical use of their indicator constructs should recognize that it is merely another manifestation of the overall broadening of environmental concern termed ‘ecosystem health’. The emerging field of ecosystem health seeks to take our technical understanding of how the environment functions and combine it with socio-economic goals, using a human health metaphor and an ethical underpinning. 4. River health might be better served by adopting a veterinary approach rather than the model of human health. This is because, like animals, riverine environments come in many different forms and cannot complain of ill health. Desirable interventions will vary with the uses to which we wish to put a river and our reasons for being concerned about a river’s health. A framework for this diagnostic approach is presented. 5. An enormous challenge lies ahead in integrating the various measurements of riverine attributes that might together constitute ‘river health’. We need ways to cater for the pluralism of modern societies, and we need more dynamic assessments of river condition, possibly founded on studies of key ecological processes.  相似文献   

3.
Rivers are valuable to human beings because of their various functions. Unfortunately, ecological integrity of rivers has been seriously threatened by human activities, resulting in poor river functions. It is thus necessary to evaluate and maintain river health. Meanwhile, it is challenging to comprehensively assess river health with a single method alone. It is therefore relevant to combine the advantages of multiple methods in river health assessment. By classifying and characterizing river functions, we first established an indicator system for river health assessment in plain river network regions. We then assessed the health status of the Taihu Plain in terms of an improved entropy-based fuzzy matter-element model. We found that the overall health status of the Taihu Plain is below “good”. In particular, the health status of Yang-Cheng-Dian-Mao and Hang-Jia-Hu Region is “moderate”; the Wu-Cheng-Xi-Yu Region displays the poorest natural and social river functions. We also found that flood control is the most important influential factor in river health. Our findings suggest that rivers in the Taihu Plain must be restored to maintain their health, with the Wu-Cheng-Xi-Yu Region that must be restored preferentially, and that the river function of flood control must be improved at the scale of whole watershed. Comparing with other four commonly used comprehensive assessment methods, our improved entropy-based fuzzy matter-element model outperforms in reflecting objective fact and can be applied to river health assessment. Our results are generally consistent with existing studies, confirming that the proposed method for river health assessment is effective and feasible. Therefore, it provides a useful reference for river health assessment in other plain river network regions.  相似文献   

4.
Defining and measuring river health   总被引:57,自引:0,他引:57  
1. Society benefits immeasurably from rivers. Yet over the past century, humans have changed rivers dramatically, threatening river health. As a result, societal well-being is also threatened because goods and services critical to human society are being depleted. 2. ‘Health’— shorthand for good condition (e.g. healthy economy, healthy communities) — is grounded in science yet speaks to citizens. 3. Applying the concept of health to rivers is a logical outgrowth of scientific principles, legal mandates, and changing societal values. 4. Success in protecting the condition, or health, of rivers depends on realistic models of the interactions of landscapes, rivers, and human actions. 5. Biological monitoring and biological endpoints provide the most integrative view of river condition, or river health. Multimetric biological indices are an important and relatively new approach to measuring river condition. 6. Effective multimetric indices depend on an appropriate classification system, the selection of metrics that give reliable signals of river condition, systematic sampling protocols that measure those biological signals, and analytical procedures that extract relevant biological patterns. 7. Communicating results of biological monitoring to citizens and political leaders is critical if biological monitoring is to influence environmental policies. 8. Biological monitoring is essential to identify biological responses to human actions. By using the results to describe the condition, or health, of rivers and their adjacent landscapes and to diagnose causes of degradation, we can develop restoration plans, estimate the ecological risks associated with land use plans in a watershed, or select among alternative development options to minimize river degradation.  相似文献   

5.
Mary E. Power 《Oikos》2001,94(1):118-129
Managers are increasingly aware of the need for science to inform the stewardship of natural lands and resources. If ecologists are to address this need, we must increase the scope of our inferences, while maintaining sufficient resolution and realism to predict trajectories of specific populations or ecosystem variables. Food chain and simple food web models, used either as core or component hypotheses, can help us to meet this challenge. The simple mass balance logic of dynamic food chain or food web models can organize our thinking about a range of applied problems, such as evaluating controls over populations of concern, or of biotic assemblages that affect important ecosystem properties. In other applications, a food chain or web may be incorporated as one element in models of regional mass balances affecting resources or environments. Specific predictions of food web models will often fail because of inadequate resolution (e.g., of functionally significant differences among taxa within "trophic levels") or insufficient scope (e.g., of spatio-temporal variation over scales relevant to management). Increasing use of tracers to delimit spatial scales of food web interactions will reduce, but not eliminate, this limitation. If used with skepticism and vigilance to local natural history, however, food chain or simple food web models can promote the iterative feedback between prediction, falsification by observation, and new prediction central to hypothetico-deductive science and adaptive management. Experience argues that this stepwise path is the fastest towards better understanding and control of our impacts on nature.  相似文献   

6.
7.
Are alien fish a reliable indicator of river health?   总被引:10,自引:0,他引:10  
1. The ability of many introduced fish species to thrive in degraded aquatic habitats and their potential to impact on aquatic ecosystem structure and function suggest that introduced fish may represent both a symptom and a cause of decline in river health and the integrity of native aquatic communities. 2. The varying sensitivities of many commonly introduced fish species to degraded stream conditions, the mechanism and reason for their introduction and the differential susceptibility of local stream habitats to invasion because of the environmental and biological characteristics of the receiving water body, are all confounding factors that may obscure the interpretation of patterns of introduced fish species distribution and abundance and therefore their reliability as indicators of river health. 3. In the present study, we address the question of whether alien fish (i.e. those species introduced from other countries) are a reliable indicator of the health of streams and rivers in south‐eastern Queensland, Australia. We examine the relationships of alien fish species distributions and indices of abundance and biomass with the natural environmental features, the biotic characteristics of the local native fish assemblages and indicators of anthropogenic disturbance at a large number of sites subject to varying sources and intensities of human impact. 4. Alien fish species were found to be widespread and often abundant in south‐eastern Queensland rivers and streams, and the five species collected were considered to be relatively tolerant to river degradation, making them good candidate indicators of river health. Variation in alien species indices was unrelated to the size of the study sites, the sampling effort expended or natural environmental gradients. The biological resistance of the native fish fauna was not concluded to be an important factor mediating invasion success by alien species. Variation in alien fish indices was, however, strongly related to indicators of disturbance intensity describing local in‐stream habitat and riparian degradation, water quality and surrounding land use, particularly the amount of urban development in the catchment. 5. Potential confounding factors that may influence the likelihood of introduction and successful establishment of an alien species and the implications of these factors for river bioassessment are discussed. We conclude that the potentially strong impact that many alien fish species can have on the biological integrity of natural aquatic ecosystems, together with their potential to be used as an initial basis to find out other forms of human disturbance impacts, suggest that some alien species (particularly species from the family Poeciliidae) can represent a reliable ‘first cut’ indicator of river health.  相似文献   

8.
1. Effective tools are needed to measure the ‘health’ of rivers at scales large enough to be useful for management. Indicators for assessing the complex of variables that constitutes river health need to be ecologically based, efficient, rapid and consistently applicable in different ecological regions. 2. A large-scale survey of rivers in New South Wales, Australia provided data to test the Index of Biotic Integrity (IBI). The IBI employs the fish-community attributes, identified using regional and river-size data, expected for a river reach of excellent environmental quality. It uses metrics based on species richness, abundance, community structure and the health of individual fish. IBI metrics were established to suit a relatively low-diversity and unspecialized freshwater fish fauna in south-eastern Australia, totalling 55 species. 3. The IBI was able to discriminate between relative levels of environmental quality within a diverse set of stream systems and four presumptive ecological regions. The index was validated by testing the repeatability of scores, and by comparison of IBI scores at eighty sites with an independent measure of potential catchment condition, the River Disturbance Index. 4. Assessments of metric performance showed that eleven of the twelve metrics contributed satisfactorily. One metric based on trophic guild performed poorly and should be deleted from the index. Six other recommendations are made to enhance the performance of the IBI. 5. Results show that, while all large rivers have been disturbed, rivers in the Murray region and those in many coastal montane areas are particularly degraded. 6. The IBI results presented here demonstrate a validated method for large-scale monitoring of river health based on a fish fauna of limited diversity, in the absence of suitable reference sites.  相似文献   

9.
In Japan the River Law was amended in 1997 to expand the traditional roles of flood control and water supply in river management to include environmental conservation. Two major multidisciplinary research groups were also founded to address the environmental issues arising from the management of rivers and watershed areas in Japan. One called the River Ecology Research Group was formed in 1995 to search for an ideal dynamic state of rivers to be managed. Six case studies commenced involving measurements of natural and human impacts on representative rivers and their biota selected from different regions of the country. Restoration of natural rivers has also been attempted. The other, called the Watershed Ecology Research Group, was formed in 1998 to study the natural environment surrounding dams. It consists of four groups concerned with forest ecology in the headwaters, raptor management research, reservoir ecology, and flow regime research. The topics include modeling of regeneration dynamics of riparian forests, GIS mapping of endangered raptor habitats, developing measures to reduce eutrophication of reservoir water, and the use of biodiversity of benthic faunas as an indicator of environmental change in the downstream. In both groups, ecologists collaborate with engineers who are responsible for the river infrastructure, to predict future impacts and keep ecological perspectives for the maintenance of the healthy environment of rivers and reservoirs.  相似文献   

10.
11.
S. M. Haslam 《Hydrobiologia》1996,340(1-3):345-348
The welcome increase in projects increasing river vegetation prompts theoretical consideration. To restore is to bring back what was there before — but at what period? 1860 to 1940 is suggested, as ‘traditional’. Traditional rivers differ greatly between river types and between rivers: in water, structural and biotic characters, and Sense of Place. Aiming at these, holistically, is aiming at restoration. Aiming at part, or trying to convert rivers to a Standard Recommended river is, at best, enhancement. The latter development lessens the unique variety and special features of rivers that are the heritage of each country.  相似文献   

12.
The thermal regime of rivers: a review   总被引:18,自引:0,他引:18  
D. CAISSIE 《Freshwater Biology》2006,51(8):1389-1406
1. The thermal regime of rivers plays an important role in the overall health of aquatic ecosystems, including water quality issues and the distribution of aquatic species within the river environment. Consequently, for conducting environmental impact assessments as well as for effective fisheries management, it is important to understand the thermal behaviour of rivers and related heat exchange processes. 2. This study reviews the different river thermal processes responsible for water temperature variability on both the temporal (e.g. diel, daily, seasonal) and spatial scales, as well as providing information related to different water temperature models currently found in the literature. 3. Water temperature models are generally classified into three groups: regression, stochastic and deterministic models. Deterministic models employ an energy budget approach to predict river water temperature, whereas regression and stochastic models generally rely on air to water temperature relationships. 4. Water temperature variability can occur naturally or as a result of anthropogenic perturbations, such as thermal pollution, deforestation, flow modification and climate change. Literature information is provided on the thermal regime of rivers in relation to anthropogenic impacts and such information will contribute to the better protection of fish habitat and more efficient fisheries management.  相似文献   

13.
Dryland rivers occur over much of Australia’s inland and have some of the most variable patterns of flow in the world. Despite their dominance in terms of Australia’s river types, dryland rivers have not been the focus of the recent increase in research on indicators of river health, mostly owing to their spatial remoteness and relatively low levels of water resource development and human disturbance. Most rivers in arid and semi-arid regions are ephemeral, and only carry significant flows during the wetter months or following infrequent but intense rainfall events. It is not known which, if any, of the existing approaches to river health assessment can be used to accurately assess the health of these large ephemeral rivers. This paper considers why the standard methods for interpreting the currently-used indicators for river health may need to be adapted for variable systems and suggests the use of trends that recognise natural variation in indicator values for undertaking this.  相似文献   

14.
P. H. Nienhuis 《Hydrobiologia》2006,565(1):261-275
Over the past 50 years ecology has developed into a mature branch of the natural sciences, comprising firm concepts (e.g. for rivers River Continuum Concept and Flood Pulse Concept) and extensive empirical surveys (sophisticated lab and field experiments, simulation models, GIS). Estuaries and rivers are continuously threatened ecosystems, considering the massive expansion of man’s economic activities. I focus on rivers and estuaries in the Netherlands (W. Europe), where recent public interest has mainly been determined by two flooding disasters (mega-disaster in 1953; near-disaster in 1995). The measures taken to enhance the safety of the human population were adequate: building of large closure dams, and storm surge barriers in the estuaries, and heightening of levees along the rivers. Eventually these measures were detrimental for what was left of the dynamic river ecosystems from the past. This paper focuses on two ecosystem studies. (1) An ecosystem study in Grevelingen lagoon, a large embanked estuary that changed into a brackish water lagoon. Predictive ecological models (e.g. for the wax and wane of Eelgrass, Zostera marina) were inadequate because of the exceptional characteristics of the lagoon: the ecosystem appeared to be instable, and not resilient. (2) An ecosystem study at Afferdensche and Deestsche Waarden, a floodplain area along the river Waal, strongly affected by toxicants deposited before 1980. We studied the functioning and eco-toxicology of floodplain food webs, deteriorated by pollutants. Fine-tuned spatial components were introduced in ecological risk assessment models of several trophic levels (e.g. a top predator, the Little Owl, Athena noctua). Safety for the human population, living below sea level, and below the level of the main rivers, must be improved, but overhasty technocratic measures deteriorating the remaining semi-natural, highly appreciated landscapes, should be avoided. Stakeholder interests must be adapted to sustainable ecological river management, and not the other way round, as has been done for the past ten centuries.  相似文献   

15.
Leaf biomechanical properties have the potential to act as antiherbivore defences. However, compared with studies on chemical defences, there are few studies that have demonstrated that the physical or biomechanical structure of plants can prevent or influence herbivory. This difference in focus by ecologists may relate to the dominant paradigm of plant chemical defences in ecological research and the perceived difficulties that ecologists have with the engineering principles embedded in biomechanics. The advantage of using materials engineering concepts is that each property is precisely defined and quantifiable, although the latter may be difficult in leaves because of their composite and anisotropic nature. Most herbivory studies have used simple penetrometers to measure leaf properties, often termed ‘toughness’. As defined in materials engineering, the measured properties are ‘force to fracture’ and ‘strength’, not toughness. Measurement of strength, the resistance to crack initiation, is relevant to understanding herbivory. Measurement of ‘toughness’ as defined by materials engineering is also relevant. Toughness is the resistance to crack propagation and is a measure of the energy required to fracture the leaf. This requires more sophisticated equipment than simple penetrometers because it requires a simultaneous measure of the punch displacement. In addition, purists would argue that a punch cannot be used to measure true toughness because the crack is not controlled and plastic deformation is also involved. However, it may be the only method that allows detection of fine‐scale pattern in mechanical properties across a leaf surface at a scale that is relevant to herbivory. There is very little work on the scale at which these properties vary, particularly with regard to different sized herbivores. In addition, few studies have investigated a broad range of relevant biomechanical properties in relation to herbivory. Therefore, it is not possible yet to be definitive about the relative merits of the various types of tests. A single test might show a pattern in relation to herbivore damage at a gross level. However, to really understand the functional and ecological significance of leaf texture in relation to herbivory, a more reductionist approach is needed. Only then can we move on to the larger scales of pattern that many ecologists are seeking.  相似文献   

16.
A strategy to assess river restoration success   总被引:6,自引:0,他引:6  
1. Elaborate restoration attempts are underway worldwide to return human‐impacted rivers to more natural conditions. Assessing the outcome of river restoration projects is vital for adaptive management, evaluating project efficiency, optimising future programmes and gaining public acceptance. An important reason why assessment is often omitted is lack of appropriate guidelines. 2. Here we present guidelines for assessing river restoration success. They are based on a total of 49 indicators and 13 specific objectives elaborated for the restoration of low‐ to mid‐order rivers in Switzerland. Most of these objectives relate to ecological attributes of rivers, but socio‐economic aspects are also considered. 3. A strategy is proposed according to which a set of indicators is selected from the total of 49 indicators to ensure that indicators match restoration objectives and measures, and that the required effort for survey and analysis of indicators is appropriate to the project budget. 4. Indicator values are determined according to methods described in detailed method sheets. Restoration success is evaluated by comparing indicator values before and after restoration measures have been undertaken. To this end, values are first standardised on a dimensionless scale ranging from 0 to 1, then averaged across different indicators for a given project objective, and finally assigned to one of five overall success categories. 5. To illustrate the application of this scheme, a case study on the Thur River, Switzerland, is presented. Seven indicators were selected to meet a total of five project objectives. The project was successful in achieving ‘provision of high recreational value’, ‘lateral connectivity’ and ‘vertical connectivity’ but failed to meet the objectives ‘morphological and hydraulic variability’ and ‘near natural abundance and diversity of fauna’. Results from this assessment allowed us to identify potential deficits and gaps in the restoration project. To gain information on the sensitivity of the assessment scheme would require a set of complementary indicators for each restoration objective.  相似文献   

17.
城市化对流域生态水文过程的影响研究综述   总被引:3,自引:0,他引:3  
郝璐  孙阁 《生态学报》2021,41(1):13-26
了解流域水文过程(水量和水质)是流域综合管理的基础。城市化引起的生态环境问题已成为目前和未来一段相当长的时期内人类社会面临的重大问题。然而,城市化(土地利用/覆被变化、新污染物产生)、水文(降水、入渗、蒸散、径流过程)和生态系统服务(产水服务、调节气候、土壤保持、初级生产力、维持生物多样性等)在不同时空尺度之间的相互作用还存在知识空白。从城市化对流域生态系统结构和功能的影响、城市化对地表能量平衡与水量平衡的影响、城市化对水质和水生生物的影响、以及城市土地利用/覆被变化的大气环境效应等多方面系统总结了城市化影响流域生态水文过程的研究进展。研究发现,城市"热岛"、"干岛"、暴雨径流引起的城市内涝、水污染等环境现象都与生态水文过程密切相关。强调现代城市规划需要遵循生态水文学规律,从全流域生态系统角度认识近年来新出现的不同尺度的城市环境效应。城市最佳管理措施应以流域为单元实施,以调节土地利用/覆被、保护湿地(包括自然与人工湿地)为手段,充分发挥自然生态系统调节功能(如植被蒸散和净化水质)。未来城市生态水文学应围绕"低影响开发"以及"基于自然的解决方案"等城市流域管理措施,在稳定城市小气候、缓解洪涝干旱等极端水文气象灾害风险以及减轻城市水污染等方面开展多尺度综合研究。  相似文献   

18.
19.
Habitat modelling has become an increasingly important tool in river sciences to evaluate impacts on running waters and to predict the effects of river restoration in the context of the European Water Framework Directive which aims to reach a good ecological status by 2015. In a scaling framework like the River Scaling Concept, micro- and mesoscale habitat modelling hierarchically integrate point-/local-scale abiotic processes like grain sorting, initiation of sediment transport, bedform development and braiding with biological processes like spawning, daily and seasonal movements, feeding and shifting to refuge habitats. The paper, along with application results, shows that micro- and mesoscale habitat models are complementary especially for large river systems. Overall possibilities, restrictions and future development are discussed. Both rely on dynamic abiotic modelling as a basis as well as on biological data. In future, especially for large rivers, habitat modelling should be addressed on both scales (micro-/meso-) with the main focus on site-specific efficiencies (e.g. minimum efforts) and uncertainties (e.g. transferring suitability indices).  相似文献   

20.
Propagule dispersal and the scales of marine community process   总被引:4,自引:0,他引:4  
Benthic marine organisms are characterized by a bipartite life history in which populations of sedentary adults are connected by oceanic transport of planktonic propagules. In contrast with the terrestrial case, where ‘long distance dispersal’ (LDD) has traditionally been viewed as a process involving rare events, this creates the possibility for large numbers of offspring to travel far relative to the spatial scale of adult populations. As a result, the concept of LDD must be examined carefully when applied in a marine context. Any measure of LDD requires reference to an explicit ‘local’ scale, often defined in terms of adult population demography, habitat patchiness, or the average dispersal distance. Terms such as ‘open’ and ‘closed’ are relative, and should be used with caution, especially when compared across different taxa and systems. We use recently synthesized data on marine propagule dispersal potential and the spread of marine invasive species to draw inferences about average and maximum effective dispersal distances for marine taxa. Foremost, our results indicate that dispersal occurs at a wide range of scales in marine communities. The nonrandom distribution of these scales among community members has implications for marine community dynamics, and for the implementation of marine conservation efforts. Second, in agreement with theoretical results, our data illustrate that average and extreme dispersal scales do not necessarily covary. This further confounds simple classifications of ‘short’ and ‘long’ dispersers, because different ecological processes (e.g. range expansion vs. population replenishment) depend on different aspects of the dispersal pattern (e.g. extremes vs. average). Our findings argue for a more rigorous quantitative view of scale in the study of marine dispersal processes, where relative terms such as ‘short’ and ‘long’, ‘open’ and ‘closed’, ‘retained’ and ‘exported’ are defined only in conjunction with explicit definitions of the scale and process of interest. This shift in perspective represents an important step towards unifying theoretical and empirical studies of dispersal processes in marine and terrestrial systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号