首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhanced voluntary motor inhibition regularly accompanies conditioned increases in the sensorimotor rhythm (SMR), a 12–14-Hz Rolandic EEG rhythm in cats. A similar rhythm, presumably SMR, has also been identified in the human EEG. The clinical effectiveness of SMR operant conditioning has been claimed for epilepsy, insomnia, and hyperkinesis concurrent with seizure disorders. The present report attempts to follow up and replicate preliminary findings that suggested the technique's successful application to hyperkinesis uncomplicated by a history of epilepsy. SMR was defined as 12–14-Hz EEG activity in the absence of high-voltage slow-wave activity between 4 and 7 Hz. Anticipated treatment effects were indexed by systematic behavioral assessments of undirected motor activity and short attention span in the classroom. EEG and behavioral indices were monitored in four hyperkinetic children under the following six conditions: (1) No Drug, (2) Drug Only, (3) Drug and SMR Training I, (4) Drug and SMR Reversal Training, (5) Drug and SMR Training II, (6) No Drug and SMR Training. All hyperkinetic subjects were maintained on a constant drug regimen throughout the phases employing chemotherapy. Contingent increases and decreases in SMR occurred in three of four training subjects and were associated with similar changes in classroom assessments of motor inactivity. Combining medication and SMR training resulted in substantial improvements that exceeded the effects of drugs alone and were sustained with SMR training after medication was withdrawn. In contrast, these physiological and behavioral changes were absent in one highly distractible subject who failed to acquire the SMR task. Finally, pretraining levels of SMR accurately reflected both the severity of original motor deficits and the susceptibility of hyperkinetic subjects to both treatments. Although the procedure clearly reduced hyperkinetic behavior, a salient, specific therapeutic factor could not be identified due to the dual EEG contingency imposed combined with associated changes in EMG. Despite these and other qualifying factors, the findings suggested the prognostic and diagnostic value of the SMR in the disorder when overactivity rather than distractibility is the predominant behavioral deficit.  相似文献   

2.
Reduced seizure incidence coupled with voluntary motor inhibition accompanied conditioned increases in the sensorimotor rhythm(SMR), a 12–14 Hz rhythm appearing over rolandic cortex. Although SMR biofeedback training has been successfully applied to various forms of epilepsy in humans, its potential use in decreasing hyperactivity has been limited to a few cases in which a seizure history was also a significant feature. The present study represents a first attempt to explore the technique's applicability to the problem of hyperkinesis independent of the epilepsy issue. The results of several months of EEG biofeedback training in a hyperkinetic child tend to corroborate and extend previous findings. Feedback presentations for SMR were contingent on the production of 12–14-Hz activity in the absence of 4–7-Hz slow-wave activity. A substantial increase in SMR occurred with progressive SMR training and was associated with enhanced motor inhibition, as gauged by laboratory measures of muscular tone(chin EMG) and by a global behavioral assessment in the classroom. Opposite trends in motor inhibition occurred when the training procedure was reversed and feedback presentations were contingent on the production of 4–7 Hz in the absence of 12–14-Hz activity. Although the preliminary nature of these results is stressed, the subject population has recently been increased to establish the validity and generality of the findings and will include the use of SMR biofeedback training after medication has been withdrawn.This research was a segment of the junior author's dissertation research.  相似文献   

3.
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12- to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4-8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.  相似文献   

4.
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12-to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4–8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.The authors would like to thank Mr. Kevin Bianchini for his assistance in this study.  相似文献   

5.
Two groups of eight adults successfully trained with biofeedback for increases in 40-Hz EEG responses in left or right hemispheres also demonstrated significant 40-Hz EEG increases during baseline periods, and increases in the contralateral hemisphere during training periods. No changes in heart rate, 40-Hz EMG, or 21- to 31-Hz beta, alpha, or theta EEG occurred over training days. Three subjects returning for additional training demonstrated suppression of 40-Hz EEG. A group of four subjects experiencing daily bidirectional training produced substantial within-session control of 40-Hz EEG but no changes over days. Data from posttraining tests without feedback for successful subjects in both groups indicated significant control of 40-Hz EEG responses in the initial parts of these sessions, and some correlated changes in other EEG responses. Measures of successful subjects' experiences during training and control tests indicated awareness of changes in subjective concomitants of EEG responses. This study suggests further strategies for research on behavioral correlates of EEG activity.  相似文献   

6.
Eight severely epileptic patients, four males and four females, ranging in age from 10 to 29 years, were trained to increase 12–14 Hz EEG activity from the regions overlying the Rolandic area. This activity, the sensorimotor rhythm(SMR), has been hypothesized to be related to motor inhibitory processes(Sterman, 1974). The patients represented a crosssection of several different types of epilepsy, including grand mal, myoclonic, akinetic, focal, and psychomotor types. Three of them had varying degrees of mental retardation. SMR was detected by a combination of an analog filtering system and digital processing. Feedback, both auditory and/or visual, was provided whenever one-half second of 12–14-Hz activity was detected in the EEG. Patients were provided with additional feedback keyed by the output of a 4–7-Hz filter which indicated the presence of epileptiform spike activity, slow waves, or movement. Feedback for SMR was inhibited whenever slow-wave activity spikes or movement was also present. During the treatment period most of the patients showed varying degrees of improvement. Two of the patients who had been severely epileptic, having multiple seizures per week, have been seizure free for periods of up to 1 month. Other patients have developed the ability to block many of their seizures. Seizure intensity and duration have also decreased. Furthermore, the successful patients demonstrated an increase in the amount of SMR and an increase in amplitude of SMR during the training period. Spectral analyses for the EEGs were performed periodically. The effectiveness of SMR conditioning for the control of epileptic seizures is evaluated in terms of patient characteristics and type of seizures.  相似文献   

7.
8.
9.
Fibromyalgia (FMS) is a chronic, painful disorder often associated with measurable deficiencies in attention. Since EEG biofeedback (EEG-BF) has been used successfully to treat attention problems, we reasoned that this modality might be helpful in the treatment of attention problems in FMS. We also speculated that improvement in central nervous system (CNS) function might be accompanied by improvement in FMS somatic symptoms. We studied fifteen FMS patients with attention problems, demonstrated by visual and auditory continuous performance testing (CPT), while completing 40 or more EEG-BF sessions. Training consisted of a “SMR protocol” that augmented 12–15 Hz brainwaves (sensory motor rhythm; SMR), while simultaneously inhibiting 4–7 Hz brainwaves (theta) and 22–30 Hz brainwaves (high beta). Serial measurements of pain, fatigue, psychological distress, morning stiffness, and tenderness were also obtained. Sixty-three FMS patients who received standard medical care, but who did not receive EEG-BF, served as controls. Visual, but not auditory, attention improved significantly (P < 0.008). EEG-BF treated subjects also showed improvement in tenderness, pain and fatigue. Somatic symptoms did not change significantly in controls. Visual attention parameters and certain somatic features of FMS appear to improve with an EEG-BF SMR protocol. EEG-BF training in FMS deserves further study.  相似文献   

10.
This report describes periodic oscillations in electroencephalographic (EEG) and behavioral activity with a cycle length of 15–30 seconds in chair-restrained squirrel monkeys (Saimiri sciureus). These oscillations consisted of alternating episodes of vigilance, characterized by visual scanning and motor movement, and inattentiveness, characterized by behavioral quiescence with little eye or limb movement. During vigilance the EEG exhibited low-amplitude, high-frequency (> 16 Hz) activity. During quiescent periods, a high-amplitude synchronized EEG was present with activity in the 8–16-Hz band predominating. The presence or frequency of this EEG and behavioral periodicity was not modified by time of day, as no difference was found between morning and afternoon recording sessions. Although the factors or mechanisms responsible for this rhythm are unclear, it should be noted by those investigators studying the behavior or neurophysiology of Saimiri sciureus in the laboratory setting.  相似文献   

11.
Maintenance of conditioning of 40-Hz EEG activity was investigated in six adults 1 to 3 years after they had experienced biofeedback training to increase 40-Hz EEG. Subjects were first retrained to alternately increase and suppress 40-Hz EEG. All six subjects achieved a preset performance criterion in 16–20 minutes. Five of these subjects also subsequently demonstrated significant control of 40-Hz EEG without feedback. The sixth subject did not demonstrate control after 76 minutes and four sessions of attempted retraining with feedback. Transfer of 40-Hz EEG control to a problem-solving task was tested in all subjects in a final session. Cognitive test items were presented and subjects were instructed to alternately increase and suppress 40-Hz EEG while solving the problems. Rates of 40-Hz EEG in suppression periods during problem solving were significantly greater than during suppression periods without problems. No significant differences in problem-solving performance were found comparing 40-Hz increase and suppression periods. This study supports previous research suggesting an association between 40-Hz EEG and mental activity, and suggests methods for further study of transfer of EEG biofeedback effects.  相似文献   

12.
This review provides an updated overview of the neurophysiological rationale, basic and clinical research literature, and current methods of practice pertaining to clinical neurofeedback. It is based on documented findings, rational theory, and the research and clinical experience of the authors. While considering general issues of physiology, learning principles, and methodology, it focuses on the treatment of epilepsy with sensorimotor rhythm (SMR) training, arguably the best established clinical application of EEG operant conditioning. The basic research literature provides ample data to support a very detailed model of the neural generation of SMR, as well as the most likely candidate mechanism underlying its efficacy in clinical treatment. Further, while more controlled clinical trials would be desirable, a respectable literature supports the clinical utility of this alternative treatment for epilepsy. However, the skilled practice of clinical neurofeedback requires a solid understanding of the neurophysiology underlying EEG oscillation, operant learning principles and mechanisms, as well as an in-depth appreciation of the ins and outs of the various hardware/software equipment options open to the practitioner. It is suggested that the best clinical practice includes the systematic mapping of quantitative multi-electrode EEG measures against a normative database before and after treatment to guide the choice of treatment strategy and document progress towards EEG normalization. We conclude that the research literature reviewed in this article justifies the assertion that neurofeedback treatment of epilepsy/seizure disorders constitutes a well-founded and viable alternative to anticonvulsant pharmacotherapy.  相似文献   

13.
Neurofeedback (NF) is a tool that has proven helpful in the treatment of various disorders such as epilepsy or attention deficit disorder (ADHD). Depending on the respective application, a high number of training sessions might be necessary before participants can voluntarily modulate the electroencephalographic (EEG) rhythms as instructed. In addition, many individuals never learn to do so despite numerous training sessions. Thus, we are interested in determining whether or not performance during the early training sessions can be used to predict if a participant will learn to regulate the EEG rhythms. Here, we propose an easy to use, but accurate method for predicting the performance of individual participants. We used a sample set of sensorimotor rhythm (SMR 12–15 Hz) NF training sessions (experiment 1) to predict the performance of the participants of another study (experiment 2). We then used the data obtained in experiment 2 to predict the performance of participants in experiment 1. We correctly predicted the performance of 12 out of 13 participants in the first group and all 14 participants in the second group; however, we were not able to make these predictions before the end of the eleventh training session.  相似文献   

14.
15.
Gilles de la Tourette syndrome (TS) is characterized by motor and vocal tic manifestations, often accompanied by behavioral, cognitive and affective dysfunctions. Electroencephalography of patients with TS has revealed reduced Sensorimotor Rhythm (SMR) and excessive fronto-central Theta activity, that presumably underlie motor and cognitive disturbances in TS. Some evidence exists that neurofeedback (NFB) training aimed at enhancing SMR amplitude is effective for reducing tics. The present report is an uncontrolled single case study where a NFB training protocol, involving combined SMR uptraining/Theta downtraining was delivered to a 17-year-old male with TS. After sixteen SMR-Theta sessions, six additional sessions were administered with SMR uptraining alone. SMR increase was better obtained when SMR uptraining was administered alone, whereas Theta decrease was observed after both trainings. The patient showed a reduction of tics and affective symptoms, and improvement of cognitive performance after both trainings. Overall, these findings suggest that Theta decrease might account for some clinical effects seen in conjunction with SMR uptraining. Future studies should clarify the feasibility of NFB protocols for patients with TS beyond SMR uptraining alone.  相似文献   

16.
Three weeks after implantation of the electrodes for EEG recording, hyperactivation of the basal nucleus of rat's amygdala was produced by a local injection of penicillin (0.5 mcl, 1% solution). Saline injection of the same volume served as control. The hyperactivation of the amygdala resulted in a long-lasting (at least for 3 weeks) increase in the locomotor activity against the background and deficit in exploratory behavior and rise of the level of anxiety and fear. The behavioral changes were accompanied by a long-term disruption of the hippocampal theta rhythm, appearance and slowing of the immobility-related high-voltage spindles, and increase in the EEG dominant frequency in the state of emotional tension. Saline injection led to a short-time (up to 1 week) decrease in locomotor and exploratory activity and increase in anxiety. These phenomena were accompanied by a short-time disruption of the theta rhythm and appearance of the 10-13-Hz oscillations characteristic for the state of emotional tension.  相似文献   

17.

Background

Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group.

Methods

The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8–12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively.

Results

The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8–12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group.

Conclusions

Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.
  相似文献   

18.
Recently, a deep impact of psychosocial effects on the outcomes of neurofeedback training was suggested. Previous findings point out an association between locus of control in dealing with technology and the individual ability to up-regulate the sensorimotor rhythm (12–15 Hz) in the EEG. Since the antecedents of locus of control in dealing with technology differ between males and females, we have investigated the effect of sex of participant and experimenter on the outcomes of neurofeedback training. Mindfulness and SMR baseline power also were assessed as possible confounding variables. Undergraduate psychology students (n?=?142) took part in a single session of neurofeedback training conducted by either male or female experimenters. Male participants as well as those female participants instructed by male experimenters were able to upregulate SMR, while female participants trained by female experimenters were not. A strong positive correlation between training outcomes and locus of control in dealing with technology was observed only in the female participants trained by female experimenters. These results are suggestive about the impact of psychosocial factors—particularly gender-related effects—on neurofeedback training outcomes and the urgent need to document it in neurofeedback studies.  相似文献   

19.
Investigation of changes in the hippocampal EEG produced by GABAergic and cholinergic substances delivered into the medial septum region was performed in awake rabbits. Changes in the threshold of seizure discharges in the hippocampus evoked by perforant path stimulation (model of acute epilepsy) were also examined. Injections of GABAA receptor antagonist picrotoxin or agonist of cholinergic receptors carbacholine in low doses induced an increase in the power of delta- and theta modulation and appearance of 7-12-Hz oscillations. The threshold of hippocampal seizure afterdischarges decreased. In higher doses, these substances evoked 7-15-Hz oscillations followed by seizures. GABAA receptor agonist muscimol and muscarinic receptor antagonist scopolamine decreased the power of the theta rhythm and increased the seizure threshold. Picrotoxin or carbacholine injected after muscimol or scopolamine, respectively, did not evoke seizures. Thus, we have shown the possibility to control hippocampal activity by local changes in the GABAergic and cholinergic systems of the medial septum region.  相似文献   

20.
Our minds are continuously alternating between external attention (EA) and mind wandering (MW). An appropriate balance between EA and MW is important for promoting efficient perceptual processing, executive functioning, decision-making, auto-biographical memory, and creativity. There is evidence that EA processes are associated with increased activity in high-frequency EEG bands (e.g., SMR), contrasting with the dominance of low-frequency bands during MW (e.g., Theta). The aim of the present study was to test the effects of two distinct single session real-time EEG (rtEEG) protocols (SMR up-training/Theta down-training—SMR?Theta?; Theta up-training/SMR down-training—Theta?SMR?) on EA and MW processes. Thirty healthy volunteers were randomly assigned to one of two rtEEG training protocols (SMR?Theta?; Theta?SMR?). Before and after the rtEEG training, participants completed the attention network task (ANT) along with several MW measures. Both training protocols were effective in increasing SMR (SMR?Theta?) and theta (Theta?SMR?) amplitudes but not in decreasing the amplitude of down-trained bands. There were no significant effects of the rtEEG training in either EA or MW measures. However, there was a significant positive correlation between post-training SMR increases and the use of deliberate MW (rather than spontaneous) strategies. Additionally, for the Theta?SMR? protocol, increase in post-training Theta amplitude was significantly associated with a decreased efficiency in the orientation network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号