首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kuhnle  U.  Schwarz  H. P.  Löhrs  U.  Stengel-Ruthkowski  S.  Cleve  H.  Braun  A. 《Human genetics》1993,92(6):571-576
We report on 46,XX true hermaphroditism and 46,XX maleness coexisting in the same pedigree, with maternal as well as paternal transmission of the disorder. Molecular genetic analysis showed that both hermaphrodites as well as the 46,XX male were negative for Y-chromosomal sequences. Thus, this pedigree is highly informative and allows the following conclusions: first, the maternal as well as paternal transmission of the disorder allows the possibility of an autosomal dominant as well as an X-chromosomal dominant mode of inheritance; second, testicular determination in the absence of Y-specific sequences in familial 46,XX true hermaphrodites as well as in 46,XX males seems to be due to the varying expression of the same genetic defect; and third, there is incomplete penetrance of the defect.  相似文献   

2.
Four cases of XX patients with testis development are reported. The aim of this study was to describe their clinical features and to see if there was any relationship between phenotypes and the presence of Y material. Several human Y-derived sequences including the SRY probe were used to analyze the DNA of the patients. Yp material including the pseudo-autosomal region and SRY was detected. The cases reported in this study confirm that XX true hermaphrodites cannot be distinguished from XX males on the basis of their genotypes. There is no relationship between clinical and anatomical phenotypes and the presence of Y material. SRY does not warrant a complete and normal testis differentiation. Although similar in some features with Klinefelter's syndrome patients, XX males exhibit specific clinical manifestations due to the lack of Y-specific genes.  相似文献   

3.
The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, as mutations in SRY can cause XY sex reversal. Although some SRY missense mutations affect DNA binding and bending activities, it is unclear how others contribute to disease. The high mobility group domain of SRY has two nuclear localization signals (NLS). Sex-reversing mutations in the NLSs affect nuclear import in some patients, associated with defective importin-beta binding to the C-terminal NLS (c-NLS), whereas in others, importin-beta recognition is normal, suggesting the existence of an importin-beta-independent nuclear import pathway. The SRY N-terminal NLS (n-NLS) binds calmodulin (CaM) in vitro, and here we show that this protein interaction is reduced in vivo by calmidazolium, a CaM antagonist. In calmidazolium-treated cells, the dramatic reduction in nuclear entry of SRY and an SRY-c-NLS mutant was not observed for two SRY-n-NLS mutants. Fluorescence spectroscopy studies reveal an unusual conformation of SRY.CaM complexes formed by the two n-NLS mutants. Thus, CaM may be involved directly in SRY nuclear import during gonadal development, and disruption of SRY.CaM recognition could underlie XY sex reversal. Given that the CaM-binding region of SRY is well-conserved among high mobility group box proteins, CaM-dependent nuclear import may underlie additional disease states.  相似文献   

4.
The sex-determining region Y is a gene located in the distal portion of the short arm of human (SRY) and mouse (Sry) Y chromosomes and considered to be the best candidate for the testis determining factor (TDF/Tdy). The gene is believed to be the key factor in sex differentiation in mammals and is conserved across mammalian species. We report herein that the SRY/Sry gene has been assigned to pi 2-p13 on the short arm of the Y chromosome in pig by in situ hybridization. The result confirms interspecies conservation of this chromosomal segment in the evolution of mammalian chromosomes, and suggests further use of this gene probe in genomic studies in other mammals. The assignment of the Sry gene is the second physical gene mapping data available for the Y chromosome in pigs. Such data can be used in the effort of constructing the pig gene map and for further establishment of a comparison of sex chromosome morphology in different mammalian species concerning sex-specific and pseudoautosomal regions.  相似文献   

5.
Summary A total of 30 cases of 46,XX true hermaphroditism was analysed for Y-DNA sequences including the recently cloned gene for male testis-determination SRY. In 3 cases, a portion of the Y chromosome including SRY was present and, in 2 cases, was localised, to Xp22 by in situ hybridisation. Since previous studies have shown that the majority of XX males are generated by an X-Y chromosomal interchange, the Xp22 position of the Yp material suggests that certain cases of hermaphroditism can arise by the same meiotic event. The phenotype in the 3 SRY-positive cases may be caused by X-inactivation resulting in somatic mosaicism of testis-determining factor expression giving rise to both testicular and ovarian tissues. Autosomal or X-linked mutation(s) elsewhere in the sex-determining pathway may explain the phenotype observed in the remaining 27 SRY-negative cases.  相似文献   

6.
7.
The case of a 24-year-old man with hypoplastic external genitalia, lack of the right scrotal testis and gynaecomastia has been described. In the intermitotic cells the cytogenetic investigations revealed the presence of the X body and the absence of the Y body. A 45,X/46,XX/46,X,mar/47,XX,mar karyotype could be established. On laparotomy a rudimentary ovary, uterus and vagina were detected on the right side of the abdominal cavity.  相似文献   

8.
9.
10.
11.
Summary Two loci on the short arm of the human Y chromosome have recently been described as candidates for the testis determining factor (TDF); namely, ZFY, and a locus distal to ZFY, near the pseudoautosomal boundary. We have previously reported on seven 46,XX true hermaphrodites and one 45,X mixed gonadal dysgenesis case all presenting with testicular tissue in their gonads in the apparent absence of Y-specific DNA sequences. A reanalysis of these cases shows them all to lack ZFY, but one 46,XX true hermaphrodite carries sequences next to the Y pseudoautosomal boundary. This case provides further evidence for assigning the TDF locus very close to the pseudoautosomal region on Yp.  相似文献   

12.
In an effort to better define the molecular mechanism of the functional specificity of human sex-determining region on the Y chromosome (SRY), we have carried out equilibrium binding assays to study the interaction of the full-length bacterial-expressed protein with a DNA response element derived from the CD3epsilon gene enhancer. These assays are based on the observation of the fluorescence anisotropy of a fluorescein moiety covalently bound to the target oligonucleotide. The low anisotropy value due to the fast tumbling of the free oligonucleotide in solution increases substantially upon binding the protein to the labeled target DNA. Our results indicate that the full-length human wild-type SRY (SRY(WT)) forms a complex of high stoichiometry with its target DNA. Moreover, we have demonstrated a strong salt dependence of both the affinity and specificity of the interaction. We have also addressed the DNA bending properties of full-length human SRY(WT) in solution by fluorescence resonance energy transfer and revealed that maximal bending is achieved with a protein to DNA ratio significantly higher than the classical 1:1. Oligomerization thus appears, at least in vitro, to be tightly coupled to SRY-DNA interactions. Alteration of protein-protein interactions observed for the mutant protein SRY(Y129N), identified in a patient presenting with 46,XY sex reversal, suggests that oligomerization may play an important role in vivo as well.  相似文献   

13.
True hermaphroditism (TH) is an unusual form of sex reversal, characterized by the development of testicular and ovarian tissue in the same subject. Approximately 60% of the patients have a 46,XX karyotype, 33% are mosaics with a second cell line containing a Y chromosome, while the remaining 7% are 46,XY. Molecular analyses have demonstrated that SRY is present in only 10% of TH with a 46,XX karyotype; therefore, in the remaining 90%, mutations at unknown X-linked or autosomal sex determining loci have been proposed as factors responsible for testicular development. True hermaphroditism presents considerable genetic heterogeneity with several molecular anomalies leading to the dual gonadal development as SRY point mutations or SRY hidden gonadal mosaicism. In order to identify genetic defects associated with subjects with the disease, we performed molecular analyses of the SRY gene in DNA from blood leukocytes and gonadal tissue in 12 true hermaphrodites with different karyotypes. Our results using PCR and FISH analyses reveal the presence of hidden mosaicism for SRY or other Y sequences in some patients with XX true hermaphroditism and confirms that mosaicism for SRY limited to the gonads is an alternative mechanism for testicular development in 46,XX true hermaphrodites.  相似文献   

14.
Sex determination in the early developmental stages of dioecious crops is economically-beneficial. During this study, a human homology of SRY gene was successfully identified in dioecious crops. SRY gene sequences of date palm and jojoba were submitted to GenBank under the accession numbers KC577225 and MK991776, respectively. This is the first report regarding the novel sex-determination methodology of four dioecious plants (jojoba, date palm, papaya, and pistachios). SRY sex gene was found in all the tested dioecious plant and human samples. This novel approach is simple and of significant importance for breeders. It facilitates the unambiguous selection of jojoba and date palm female plants at an early age and reduces the plantation cost of cultivating non-productive male plants. This is a rapid sex-determination technique for dioecious plants and mammals at an early stage. This technique specifically targets the SRY sequence that has been comprehensively investigated in humans. The kit development for the SRY-based sex determination of various crops is in progress.  相似文献   

15.
Summary Cells from an XX true hermaphrodite expressed a reduced amount of H-Y antigen when compared with normal XY cells and with cells from his father, who had an XY/XX chromosomal constitution. His mother had a normal karyotype and was H-Y negative. The four brothers of the patient were clinically and karyotypically normal. An X-Y interchange followed by random inactivation of the X chromosome is proposed to explain the H-Y antigen titer found in the patient.  相似文献   

16.
A full-term 46,XY female newborn presented with respiratory failure due to a right-sided diaphragmatic hernia. During surgical repair, exploration revealed isolated dextrocardia and hypoplasia of the right lung. Neither gonads nor wolffian or müllerian structures could be palpated. Cardiac catheterization demonstrated defects of the ventricular septum, hypoplasia of the right pulmonary artery, persistence of the left vena cava superior and a patent ductus arteriosus. Anthropometric data were normal at birth, but fell below the 3rd percentile during follow-up. Body proportions displayed a predominance of the upper compared to the lower segment. Endocrine studies indicated no defect of steroid biosynthesis and no functional gonadal tissue. Using genetic analyses of various loci within the testis-determining region of the Y chromosome, a mutation could not be detected. The patient died from pneumonia at the age of 19 months. Postmortem examination confirmed the diagnosis of gonadal agenesis.  相似文献   

17.
The sex-determining factor SRY is a DNA-binding protein that diverts primordial gonads from the ovarian pathway toward male differentiation to form testes. It gains access to the nucleus through two distinct nuclear localization signals (NLSs) that flank the high mobility group (HMG) DNA-binding domain, but the mechanisms through which these NLSs operate have not been studied. In this study, we reconstitute the nuclear import of SRY in vitro, demonstrating a lack of requirement for exogenous factors for nuclear accumulation and a significant reduction in nuclear transport in the presence of antibodies to importin beta but not importin alpha. Using a range of quantitative binding assays including enzyme-linked immunosorbent assay, fluorescence polarization, and native gel mobility electrophoresis, we assess the binding of importins to SRY, demonstrating a high affinity recognition (in the low nm range) by Imp beta independent of Imp alpha. In assessing the contribution of each NLS, we found that the N-terminal NLS was recognized poorly by importins, whereas the C-terminal NLS was bound by importin beta with similar affinity to SRY. We also found that RanGTP, but not RanGDP, could dissociate the SRY-importin beta complex in solution using FP. We describe a novel double-fluorescent label DNA binding assay to demonstrate mutual exclusivity between importin beta recognition and DNA binding on the part of SRY, which may represent an alternative release mechanism upon nuclear entry. This study represents the first characterization of the nuclear import pathway for a HMG domain-containing protein. Importantly, it demonstrates for the first time that recognition of SRY by Imp beta is of comparable affinity to that with which Imp alpha/beta recognizes conventional NLS-containing substrates.  相似文献   

18.
Investigation of the ZFY gene in XX true hermaphroditism and Swyer syndrome   总被引:2,自引:0,他引:2  
Summary Four patients with 46,XX true hermaphroditism and one patient with 46,XY pure gonadal dysgenesis (Swyer syndrome) were analyzed with a Y chromosome-derived probe that detects a specific fragment on the short arm of the Y chromosome in the putative testicle-determining region and also a fragment on the short arm of the X chromosome. Normal males and females, an individual with Turner syndrome, and patients with various causes of anomalous gonadal differentiation accompanied by cytogenetically present Y chromosome were used as controls. The Y-specific fragment was not detected in any of the persons with 46,XX true hermaphroditism. However, this fragment was positive in the 46,XY female and in all Y-bearing patients. Cytogenetic and molecular absence of the ZFY sequence in 46,XX true hermaphrodites calls for explanations other than the classic embryogenie theory. The absence of testicular differentiation in the ZFY-positive XY female evidences functionally altered sex determination or, alternatively, defective gonadal receptors.  相似文献   

19.
Summary The pattern of inheritance of several X polymorphic markers is studied in the pedigree of a 46,XX true hermaphrodite. The results of the Xga, 12E7, and G6PD segregation analysis favour the hypothesis of a preferential inactivation of the paternally derived X chromosome.  相似文献   

20.
Inheritance of ring chromosomes is reported infrequently. The authors report on a phenotypically and mentally normal mother with ring chromosome 18 mosaic with a normal cell line and her polymalformed son with non-mosaic 46,XY,r(18) karyotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号