首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translation of globin mRNA in a micrococcal nuclease-treated reticulocyte lysate was studied in the presence of increasing amounts of Mengovirus RNA, under conditions in which the number of translation initiation events remains constant as judged by the transfer of label from N-formyl[35S]methionyl-tRNAf into protein. The translation of globin mRNA is progressively inhibited by low concentrations of Mengovirus RNA, free of detectable traces of double-stranded RNA, concomitant with the increasing synthesis of Mengovirus RNA-directed products. On a molar basis, Mengovirus RNA apparently competes about 35 times more effectively than globin mRNA for a critical component in translation. The competition is relieved by the addition of highly purified eukaryotic initiation factor 2 (eIF-2). Addition of eIF-2 does not stimulate overall protein synthesis, but shifts it in favor of globin synthesis. No stimulation of globin mRNA translation by eIF-2 is seen when Mengovirus RNA is absent. These experiments show that Mengovirus RNA competes, directly or indirectly, with globin mRNA for eIF-2. In direct binding experiments using isolated mRNA and eIF-2, Mengovirus RNA is shown to compete with globin mRNA for eIF-2 and to exhibit a 30-fold higher affinity for this factor. The binding of Mengovirus RNA to eIF-2 is much more resistant to increasing salt concentrations than is the binding of globin mRNA, again reflecting its high affinity. These results reveal a direct correlation between the ability of these mRNA species to compete in translation and their ability to bind to initiation factor eIF-2. They suggest that the affinity of a given mRNA species for eIF-2 is essential in determining its translation, relative to that of other mRNA species. Messenger RNA competition for eIF-2 may contribute significantly to the selective translation of viral RNA in infected cells.  相似文献   

2.
R Gonsky  D Itamar  R Harary  R Kaempfer 《Biochimie》1992,74(5):427-434
In addition to forming a ternary complex with Met-tRNA(f) and GTP, eukaryotic initiation factor 2 (eIF-2) recognizes a specific site in mRNA molecules. Both binding activities are regulated by ATP, which itself binds tightly and specifically to eIF-2. Denaturation of eIF-2 with urea leads to complete loss of Met-tRNA(f) binding activity, while mRNA binding activity is stable. Hence, distinct conformational features in eIF-2 are required for ternary complex formation and for binding of mRNA. Chromatography of eIF-2 over ATP-agarose, in denaturing conditions that induce polypeptide subunit dissociation, results in selective retention of the beta-subunit of eIF-2. Isolated beta-subunit is capable of binding mRNA as well as ATP. Cibacron blue 3G-A binds tightly to eIF-2 and inhibits the binding of mRNA. This inhibition is relieved upon addition of ATP, showing that Cibacron blue 3G-A competes with ATP for eIF-2. eIF-2 beta subunit, active in binding of mRNA, is recovered upon chromatography of eIF-2 in denaturing conditions over matrix-bound Cibacron blue 3G-A. These results show that the ability of eIF-2 to bind mRNA and its ability to bind ATP are both lodged within remarkably stable domains of its beta-subunit. During initiation of protein synthesis, the eIF-2 beta subunit may thus interact with three ligands important for translational control: Met-tRNA(f), mRNA and ATP.  相似文献   

3.
4.
The ability of polypeptide components of eukaryotic initiation factor (eIF) 4F to bind to the m7G cap of an mRNA, to be released from that mRNA, and then to rebind to the cap of a second mRNA has been investigated. The release and rebinding steps have been termed "recycling." It was found that eIF-4B stimulates the recycling of the 24-26 kDa (p24) component of eIF-4F, and perhaps of other components as well. By contrast, eIF-4A seemed to have little or no effect on the recycling of eIF-4F components, either in the presence or absence of eIF-4B. The recycled p24 is capable of cross-linking to oxidized cap structures. The recycled factor is also able to stimulate the cross-linking of added eIF-4A, which cross-links poorly in the absence of eIF-4F. By these criteria it seems likely that the recycled eIF-4F components are active for a second round of translational initiation.  相似文献   

5.
Both myosin mRNA (26 S) and globin mRNA (9 S) have been bound to activated Sepharose 4B. The affinity of initiation factors derived from native 40 S ribosomal subunits from embryonic chick muscle for these messengers has been determined. Although both messengers bind the major components of the muscle factor preparation with the same affinity, some differences are noted in the minor components. There is an enrichment of components which bind myosin mRNA with a high affinity when the 15–18 S initiation factor complex is prepared from initiating 40 S ribosomal subunits found on myosin synthesizing polysomes rather than from total cellular factor preparations. The proteins which have a high binding affinity to myosin mRNA also have a discriminating effect when added to a wheat germ system containing myosin and globin mRNA. This is demonstrated by the fact that the synthesis of myosin heavy chain is specifically stimulated and the number of ribosomes found on myosin mRNA increase five to seven-fold; whereas neither the synthesis of globin nor the number of ribosomes associated with globin mRNA is increased. The components of an impure reticulocyte eukaryotic initiation factor 3 prepared in a similar manner as the muscle factor, do not bind myosin mRNA with the same high affinity, and these fractions separated on the myosin mRNA affinity column did not show a discriminatory effect. These results suggest that specific components of muscle 15–18 S initiation factor preparations have a higher binding affinity for myosin mRNA than globin mRNA and that these proteins may be those factors previously reported to be present which discriminate between mRNAs.  相似文献   

6.
Interaction of protein synthesis initiation factors with mRNA has been studied in order to characterize early events in the eukaryotic translation pathway. Individual reovirus mRNAs labeled with 32P in the alpha position relative to the m7G cap and eukaryotic initiation factor (eIF)-4A, -4B, and -4F purified from rabbit reticulocytes were employed. It was found that eIF-4A causes a structural change in mRNA, as evidenced by a nuclease sensitivity test: addition of high concentrations of eIF-4A greatly increase the nuclease sensitivity of the mRNA, suggesting that this factor can melt or "unwind" mRNA structure. ATP is required for this reaction. At low concentrations of eIF-4A, addition of eIF-4B is required for maximal unwinding activity. Thus eIF-4B enhances eIF-4A activity. Addition of eIF-4F also makes the mRNA sensitive to nuclease indicating a similar unwinding role to that of eIF-4A. Stoichiometric comparisons indicate that eIF-4F is more than 20-fold more efficient than eIF-4A in catalyzing this reaction. The unwinding activity of eIF-4F is inhibited by m7GDP, while that of eIF-4A is not. This suggests that eIF-4A functions independent of the 5' cap structure. Our results also suggest that the unwinding activity of eIF-4F is located in the 46,000-dalton polypeptide of this complex, which has shown by others to be similar or identical to eIF-4A.  相似文献   

7.
D J Goss  C L Woodley  A J Wahba 《Biochemistry》1987,26(6):1551-1556
The binding of the eucaryotic polypeptide chain initiation factors (eIFs) 4A, 4B, and 4F to poly(1,N6-ethenoadenylic acid) [poly(epsilon A)] was investigated by fluorescence spectroscopy. Competition experiments allowed us to determine the relative affinity of these proteins for mRNA cap analogues and the triplets AUG, GUG, UUU, UAA, and UGA. The salt dependence of eIF-4A binding to poly(epsilon A) and mRNA suggested that the binding was largely electrostatic and was enhanced in the presence of Mg2+ and ATP. The size of the binding site of eIF-4A, eIF-4B, and eIF-4F on poly(epsilon A) was approximately 13, 25, and 35 nucleotides, respectively. Fluorescence studies with the cap analogue 7-methylguanosine triphosphate as well as competition studies with poly(epsilon A) provide further evidence for a direct interaction of eIF-4F with the cap region. There was no evidence that either eIF-4B or eIF-4A bound the mRNA cap directly. In contrast to the other two factors, eIF-4B was found to bind preferentially to AUG, and of all the triplets tested, AUG was the most effective competitor for poly(epsilon A) binding.  相似文献   

8.
9.
In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhomologous end-joining (NHEJ), telomeric gene silencing, and telomere length maintenance, suggesting that these functions require Ku's DNA end-binding activity. Contrary to the current model, a mutant Ku with low affinity for dsDNA also loses affinity for TLC1 both in?vitro and in?vivo. Competition experiments reveal that wild-type Ku binds dsDNA and TLC1 mutually exclusively. Cells expressing the mutant Ku are deficient in nuclear accumulation of TLC1, as expected from the RNA-binding defect. These findings force reconsideration of the mechanisms by which Ku assists in recruiting telomerase to natural telomeres and broken chromosome ends. PAPERCLIP:  相似文献   

10.
The formation of a specific ternary complex between eukaryotic initiation factor 2 (eIF2), the initiator methionyl-tRNA (Met-tRNA), and GTP is a critical step in translation initiation in the cytoplasmic protein-synthesizing system of eukaryotes. We show that the A1 x U72 base pair conserved at the end of the acceptor stem in eukaryotic and archaebacterial initiator methionine tRNAs plays an important role in this interaction. We changed the A1 x U72 base pair of the human initiator tRNA to G1 x C72 and expressed the wild-type and mutant tRNA genes in the yeast Saccharomyces cerevisiae by using constructs previously developed in our laboratory for expression of the human initiator tRNA gene in yeasts. We show that both the wild-type and mutant human initiator tRNAs are aminoacylated well in vivo. We have isolated the wild-type and mutant human initiator tRNAs in substantially pure form, free of the yeast initiator tRNA, and have analyzed their properties in vitro. The G1 x C72 mutation affects specifically the binding affinity of eIF2 for the initiator tRNA. It has no effect on the subsequent formation of 40S or 80S ribosome initiator Met-tRNA-AUG initiation complexes in vitro or on the puromycin reactivity of the Met-tRNA in the 80S initiation complex.  相似文献   

11.
12.
Eukaryotic translation initiation factor 4G-1 (eIF4G) plays a critical role in the recruitment of mRNA to the 43 S preinitiation complex. The central region of eIF4G binds the ATP-dependent RNA helicase eIF4A, the 40 S binding factor eIF3, and RNA. In the present work, we have further characterized the binding properties of the central region of human eIF4G. Both titration and competition experiments were consistent with a 1:1 stoichiometry for eIF3 binding. Surface plasmon resonance studies showed that three recombinant eIF4G fragments corresponding to amino acids 642-1560, 613-1078, and 975-1078 bound eIF3 with similar kinetics. A dissociation equilibrium constant of approximately 42 nm was derived from an association rate constant of 3.9 x 10(4) m(-1) s(-1) and dissociation rate constant of 1.5 x 10(-3) s(-1). Thus, the eIF3-binding region is included within amino acid residues 975-1078. This region does not overlap with the RNA-binding site, which suggests that eIF3 binds eIF4G directly and not through an RNA bridge, or the central eIF4A-binding site. Surprisingly, the binding of eIF3 and eIF4A to the central region was mutually cooperative; eIF3 binding to eIF4G increased 4-fold in the presence of eIF4A, and conversely, eIF4A binding to the central (but not COOH-terminal) region of eIF4G increased 2.4-fold in the presence of eIF3.  相似文献   

13.
14.
35S-Labeled Met-tRNAfMet can be prepared from HeLa cells, for studies of translation in vitro, with both a high degree of charging and a relatively high specific radioactivity. HeLa cells are labeled with [35S]methionine in vivo, in the presence of cycloheximide to reduce translation. Their cytoplasmic RNA is then isolated by phenol extraction and subjected to cellulose ion-exchange chromatography in order to partially purify labeled Met-tRNAfMet and resolve it from Met-tRNAmMet.  相似文献   

15.
16.
Ternary complex formation was studied in reticulocyte lysate supernatants and using rat liver eukaryotic initiation factor-2 (eIF-2) preparations. Haem-deficiency reduced the rate of formation of ternary (Met-tRNAf · GTP · eIF-2) complexes by the eIF-2 in reticulocyte supernatants, the reduction being more marked when complex formation was assayed in the absence of GTP-regenerating capacity. Pretreatment with the haem-controlled repressor (HCR) reduced the rate of ternary complex formation by crude (liver) eIF-2. In contrast, complex formation by an almost homogeneous eIF-2 preparation was unaffected by HCR: sensitivity to HCR was however restored by a factor which catalyses exchange of guanine nucleotides bound to eIF-2.  相似文献   

17.
Ternary complex formation between eukaryotic initiation factor 2 (eIF-2), initiator Met-tRNA and guanosine 5′-(β, γ-imino) triphosphate [GMP-P(NH)P] is strongly inhibited by mRNA in the Artemia salina system. Developing A. salina embryos contain a factor which displays a novel activity, namely the ability to counteract the mRNA-induced inhibition of ternary complex formation. This factor is heat-labile. It is proposed that the factor may play an important role in protein biosynthesis by preventing mRNA from inhibiting an early step of peptide chain initiation.  相似文献   

18.
Initiation of eukaryotic messenger RNA synthesis   总被引:7,自引:0,他引:7  
  相似文献   

19.
20.
A major site of regulation of polypeptide chain initiation is the binding of Met-tRNA to 40 S ribosomal subunits which is mediated by eukaryotic initiation factor 2 (eIF-2). The formation of ternary complex, eIF-2.GTP.Met-tRNA, is potently inhibited by GDP. Measurement of the parameters for guanine nucleotide binding to eIF-2 is critical to understanding the control of protein synthesis by fluctuations in cellular energy levels. We have compared the dissociation constants (Kd) of eIF-2.GDP and eIF-2.GTP and find that GDP has a 400-fold higher affinity for GDP than GTP. The Kd for GDP is almost an order of magnitude less than has been reported previously. The difference between the Kd values for the two nucleotides is the result of a faster rate constant for GTP release, the rate constants for binding being approximately equal. This combination of rate constants and low levels of contaminating GDP in preparations of GTP can explain the apparently unstable nature of eIF-2.GTP observed by others. Mg2+ stabilizes binary complexes slowing the rates of release of nucleotide from both eIF-2.GDP and eIF-2.GTP. The competition between GTP and GDP for binding to eIF-2.guanine nucleotide exchange factor complex has been measured. A 10-fold higher GTP concentration than GDP is required to reduce [32P] GDP binding to eIF-2.guanine nucleotide exchange factor complex by 50%. The relevance of this competition to the regulation of protein synthesis by energy levels is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号