首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant amounts of di(2-ethylhexyl) phthalate (DEHP) leach out into blood stored in DEHP plasticized polyvinyl chloride (PVC) bags resulting in the exposure of recipients of blood transfusion to this compound. The aim of this study was to find out whether DEHP at these low levels has any effect on the activity of membrane Na(+)-K+ ATPase, since a decrease in this enzyme activity has been reported to take place in a number of disorders like neurodegenerative and psychiatric disorders, coronary artery disease and stroke, syndrome-X, tumours etc. DEHP was administered (ip) at a low dose of 750 microg/100 g body weight to rats and the activity of membrane Na(+)-K+ ATPase in liver, brain and RBC was estimated. Histopathology of brain, activity of HMG CoA reductase (a major rate limiting enzyme in the isoprenoid pathway of which digoxin, the physiological inhibitor of Na(+)-K+ ATPase is a product), intracellular concentration of Ca2+ and Mg2+ in RBC (which is altered as a result of inhibition of Na(+)-K+ ATPase) were also studied. (In the light of the observation of increase of intracellular Ca2+ load and intracellular depletion of Mg2+ when Na(+)-K+ ATPase is inhibited). Histopathology of brain revealed areas of degeneration in the rats administered DEHP. There was significant inhibition of membrane Na(+)-K+ ATPase in brain, liver and RBC. Intracellular Ca2+ increased in the RBC while intracellular Mg2+ decreased. However activity of hepatic HMG CoA reductase decreased. Activity of Na(+)-K+ ATPase and HMG CoA reductase, however returned to normal levels within 7 days of stopping administration of DEHP. The inhibition of membrane Na(+)-K+ ATPase activity by DEHP may indicate the possibility of predisposing recipients of transfusion of blood or hemodialysis to the various disorders mentioned above. However since this effect is reversed when DEHP administration is stopped, it may not be a serious problem in the case of a few transfusion; but in patients receiving repeated blood transfusion as in thalassemia patients or patients undergoing hemodialysis, possibility of this risk has to be considered. This inhibition is a direct effect of DEHP or its metabolites, since activity of HMG CoA reductase, (an enzyme which catalyses a major rate limiting step in the isoprenoid pathway by which digoxin, the physiological inhibitor of Na(+)-K+ ATPase is synthesized) showed a decrease.  相似文献   

2.
1. Na(+)-K+ and Mg(2+)-tissue ATPases of the freshwater crab Oziotelphusa senex senex showed increasing inhibition when exposed to a sublethal concentration (1.86 mg/l = 0.1 of LC50) of endosulfan for 1-30 days. 2. Na(+)-K(+)-ATPase activity in all tissues (thoracic nerve mass, gill, hepatopancreas and claw muscle) was higher than Mg(2+)-ATPase activity. 3. After 30 days exposure tissue Mg(2+)-ATPase was less affected than Na(+)-K(+)-ATPase. 4. Crabs exposed to endosulfan and then returned to uncontaminated water showed greater recovery of Mg(2+)-ATPase than Na(+)-K(+)-ATPase with 90-95% recovery after 1 day exposure and 60-65% recovery after 30 days exposure. 5. Changes in behaviour of the crabs were noted after 7 days exposure to endosulfan with progressive loss of coordination, decreased activity and increased exudation of mucus.  相似文献   

3.
In order to compare the importance of Na(+)-Ca2+ exchange in the regulation of cytosolic Ca2+ concentration (Ca2+i), acini obtained from rat pancreas and submandibular glands as well as cardiac myocytes were loaded with Na+ by inhibition of Na(+)-K+ ATPase activity then loaded with fura-2. In the exocrine tissues, incubation in K(+)-free buffer or with ouabain had no substantial effect on resting Ca2+i or on the changes in Ca2+i following exposure to carbachol as compared with acini incubated under control conditions. In contrast, rat cardiac myocytes, treated identically, showed marked changes in Ca2+i under resting and stimulated conditions as compared with controls. We conclude that the Na(+)-Ca2+ exchange systems of rat pancreatic and submandibular gland acini contribute little to the overall regulation of Ca2+i at rest during cholinergic stimulation.  相似文献   

4.
1. An ATPase (adenosine triphosphatase) preparation obtained from pig brain microsomes by treatment with sodium iodide showed four apparently different ouabain-sensitive activities under various conditions. They were (a) ouabain-sensitive Mg(2+)-stimulated ATPase, (b) K(+)-stimulated ATPase, (c) (Na(+),K(+))-stimulated ATPase and (d) Na(+)-stimulated ATPase activities. 2. These activities showed the same substrate specificity, ATP being preferentially hydrolysed and CTP slightly. AMP was not hydrolysed. 3. These activities were inhibited by low concentration of ouabain. The concentration producing 50% inhibition was 0.1mum for ouabain-sensitive Mg(2+)-stimulated ATPase, 0.2mum for K(+)-stimulated ATPase, 0.1mum for (Na(+),K(+))-stimulated ATPase and 0.003mum for Na(+)-stimulated ATPase activity. 4. The ouabain-sensitive ATPase activities were inactivated by N-ethylmaleimide but the insensitive ATPase activity was not. 5. The three ouabain-sensitive ATPase activities were inhibited about 50% by 1mm-Ca(2+), whereas the ouabain-sensitive Mg(2+)-stimulated ATPase activity was activated by the same concentration of Ca(2+). The preparation was treated with ultrasonics at 20kcyc./sec. The 2min. ultrasonic treatment inactivated the ATPase activities by 50%. 7. The temperature coefficient Q(10) was 6.6 for K(+)-stimulated ATPase activity, 3.7 for (Na(+),K(+))-stimulated ATPase and 2.6 for Na(+)-stimulated ATPase. 8. Organic solvents inactivated the ATPase activities, to which treatment the K(+)-stimulated ATPase was the most resistant. 9. The phosphorylation of the enzyme preparation became less dependent on Na(+) with decreasing pH. This Na(+)-independent phosphorylation at low pH was sensitive to K(+) and hydroxylamine as well as the Na(+)-dependent phosphorylation at neutral pH.  相似文献   

5.
Much of the research on fescue toxicosis has concentrated on evaluating animal response to grazing endophyte-infected (E+) versus endophyte-free tall fescue or the effects of single toxins such as ergonovine (EN), ergovaline (EV), or ergotamine (ET) on animal performance. Such approaches have eliminated the opportunity to test the possible additive, synergistic, or antagonistic interactions of one or more ergot alkaloids with the other ergot alkaloids found in E+ tall fescue. This study was conducted to determine the effects of simultaneous exposure of pairs of EN, EV, and ET on the kidney adenosine triphosphatase (ATPase) system in vitro. Tests were performed using three separate rat kidney homogenates and were repeated four times at concentrations of 0, 75, and 200 microM. Individually, EN, EV, and ET induced dose-dependent inhibitions of kidney Na(+)/K(+) ATPase, with EN being most potent, followed by purified EV, and then by ET. The ergot alkaloids inhibited Mg(2+) ATPase to a lesser degree than Na(+)/K(+) ATPase, with EN again being the most potent toxin. Simultaneous exposure to any combination of the ergot alkaloid pairs tested (EV + ET, EV + EN, and ET + EN) resulted in significant interactions (P < 0.05), indicating antagonistic effects on the inhibition of Na(+)/K(+) ATPase and Mg(2+) ATPase for most concentration combinations. These interactions suggest that in studies of the effects of any ergot alkaloid on animal performance, effects of other ergot alkaloids may also be present. Effects may not be additive, as was the case in this study, and the presence of one toxin may enhance or hinder the effectiveness of others.  相似文献   

6.
The present study investigated whether oxidative stress plays a role in ischemia-reperfusion-induced changes in cardiac gene expression of Na(+)-K(+) ATPase isoforms. The levels of mRNA for Na(+)-K(+) ATPase isoforms were assessed in the isolated rat heart subjected to global ischemia (30 min) followed by reperfusion (60 min) in the presence or absence of superoxide dismutase (5 x 10(4)U/L) plus catalase (7.5 x 10(4)U/L), an antioxidant mixture. The levels of mRNA for the alpha(2), alpha(3), and beta(1) isoforms of Na(+)-K(+) ATPase were significantly reduced in the ischemia-reperfusion hearts, unlike the alpha(1) isoform. Pretreatment with superoxide dismutase+catalase preserved the ischemia-reperfusion-induced changes in alpha(2), alpha(3), and beta(1) isoform mRNA levels of the Na(+)-K(+) ATPase, whereas the alpha(1) mRNA levels were unaffected. In order to test if oxidative stress produced effects similar to those seen with ischemia-reperfusion, hearts were perfused with an oxidant, H(2)O(2) (300 microM), or a free radical generator, xanthine (2mM) plus xanthine oxidase (0.03 U/ml) for 20 min. Perfusion of hearts with H(2)O(2) or xanthine/xanthine oxidase depressed the alpha(2), alpha(3), and beta(1) isoform mRNA levels of the Na(+)-K(+) ATPase, but had lesser effects on alpha(1) mRNA levels. These results indicate that Na(+)-K(+) ATPase isoform gene expression is altered differentially in the ischemia-reperfusion hearts and that antioxidant treatment appears to attenuate these changes. It is suggested that alterations in Na(+)-K(+) ATPase isoform gene expression by ischemia-reperfusion may be mediated by oxidative stress.  相似文献   

7.
A Mg(2+)+Na(+)+K(+)-stimulated adenosine triphosphatase (ATPase) preparation was isolated from rat ventral prostate by flotation of microsomal membranes in high-density sucrose solutions. The reaction medium for optimum Na(+)+K(+)-stimulated ATPase activity was found to be: Na(+), 115mm; K(+), 7-10mm; Mg(2+), 3mm; ATP, 3mm; tris buffer, pH7.4 at 38 degrees , 20mm. The average DeltaP(i) (Mg(2+)+Na(+)+K(+) minus Mg(2+)+Na(+)) was 9mumoles/mg. of protein/hr., representing a 30% increase over the Mg(2+)+Na(+)-stimulated ATPase activity. At high concentrations, K(+) was inhibitory to the enzyme activity. Half-maximal inhibition of Na(+)+K(+)-stimulated ATPase activity was elicited by ouabain at 0.1mm. The preparation exhibited phosphatase activity towards ribonucleoside triphosphates other than ATP. However, stimulation of P(i) release by Na(+)+K(+) was observed only with ATP as substrate. The apparent K(m) for ATP for Na(+)+K(+)-stimulated activity was about 0.3x10(-3)m. Ca(2+) inhibited only the Na(+)+K(+)-stimulated ATPase activity. Mg(2+) could be replaced by Ca(2+) but then no Na(+)+K(+) stimulation of ATPase activity was noticed. The addition of testosterone or dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) in vitro at 0.1-10mum under a variety of experimental conditions did not significantly increase the Na(+)+K(+)-stimulated ATPase activity. The enzyme preparations from prostates of orchidectomized rats, however, exhibited a drastic decrease in the specific activity of Na(+)+K(+)-stimulated ATPase; these changes were prevented in the orchidectomized rats by injection of testosterone propionate.  相似文献   

8.
Sodium- and potassium-dependent adenosine triphosphatase (Na+--K+-ATPase) is demonstrated in the branchial heart of Sepia officinalis L. by biochemical, cytochemical and autoradiographical methods. The biochemical data indicate the presence of Na+--K+-ATPase, shown by potassium and magnesium dependency and inhibition by ouabain. Cytochemically and autoradiographically, the enzyme is localized in the sarcolemma of the muscle cells. The positive reaction of the transparent cells (type I cells) is due to activity of alkaline phosphatases. The dark cells (type II cells) react negatively. In addition to the Na+--K+-ATPase, a magnesium-activated adenosine triphosphatase (Mg2+-ATPase) and a bicarbonate-stimulated ATPase (HCO3(-)-ATPase) are localized in the mitochondria.  相似文献   

9.
1. Subcellular fractions obtained from epimastigotes of Trypanosoma cruzi, disrupted by three different procedures, contained in addition to the already known Mg2+-activated adenosine triphosphatase (ATPase; E.C.3.6.1.4), a Ca2+-ATPase activity. 2. The Ca2+-ATPase (a) was activated by low concentrations of CaCl2 (apparent Ka, 80 microM); (b) had a Km for ATP of 0.6 mM (at 1 mM CaCl2, pH 8.0); (c) presented a broad pH curve (optimum 7.1-8.6); and (d) was insensitive to oligomycin concentrations which inhibited the Mg2+-ATPase present in the same preparations. 3. All attempts to find a (Na+-K+)-activated, ouabain-inhibited, ATPase have been unsuccessful, in spite of the fact that living epimastigoes of T. cruzi are able to concentrate K+ and exclude Na+ from the medium.  相似文献   

10.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

11.
Effects in vivo of cadmium (Cd), mercury (Hg) and methylmercury (CH3Hg) on Na(+)-K+ ATPase and uptake of 3H-dopamine (DA) in rat brain synaptosomes were studied. These heavy metals significantly inhibited the Na(+)-K+ ATPase activity in a dose-dependent manner. Similarly, inhibition of DA uptake by synaptosomes was also observed in rats treated with these metals. Intraperitoneal route of metal administration was found to be more effective than per os treatment. Mercuric compounds compared to Cd elicited a higher inhibition of Na(+)-K+ ATPase and DA uptake in rat brain synaptosomes.  相似文献   

12.
Inorganic lead ion in micromolar concentrations inhibits Electrophorus electroplax microsomal (Na+ + K+)-adenosine triphosphatase ((Na+ + K+)-ATPase) and K+-p-nitrophenylphosphatase (NPPase). Under the same conditions, the same concentrations of PbCl2 that inhibit ATPase activity also stimulate the phosphorylation of electroplax microsomes in the absence of added Na+. Enzyme activity is protected from inhibition by increasing concentrations of microsomes, ATP, and other metal ion chelators. The kinetics follow the pattern of a reversible noncompetitive inhibitor. No kinetic evidence is elicited for interactions of Pb2+ with Na+, K+, Mg2+, ATP, or p-nitrophenylphosphate. Na+- ATPase, in the absence of K+, and (Na+ + K+)-NPPase activity at low [K+] are also inhibited. ATP inhibition of NPPase is not reversed by Pb2+. The calculated concentrations of free [Pb2+] that produce 50% inhibition are similar for ATPase and NPPase activities. Pb2+ may act at a single independent binding site to produce both stimulation of the kinase and inhibition of the phosphatase activities.  相似文献   

13.
1. A sarcolemmal fraction was isolated from hamster hind-leg skeletal muscles by successive treatment with lithium bromide and potassium chloride. The membranous fraction was observed to contain a highly active Ca(2+)-stimulated ATPase (adenosine triphosphatase), a Mg(2+)-stimulated ATPase, and an Na(+)+K(+)-stimulated Mg(2+)-dependent ouabain-sensitive ATPase. 2. The Ca(2+)-stimulated ATPase activity was pH-dependent, the optimum being pH7.6. 3. Optimum activation of this enzyme was obtained with 3-4mm-Ca(2+) when 4mm-ATP was present as a substrate, and was not influenced by Na(+), K(+) or ouabain, whereas 2,4-dinitrophenol, sodium azide, oligomycin, sodium fluoride and ethanedioxybis(ethylamine)tetra-acetate were inhibitory. 4. The Ca(2+)-stimulated ATPase was markedly inhibited by thiol-blocking reagents, and cysteine was able to reverse this inhibition. 5. Various bivalent cations stimulated ATP hydrolysis by the sarcolemmal fraction in the following decreasing order of potency: Mg(2+), Ca(2+), Mn(2+), Co(2+), Sr(2+), Ba(2+), Zn(2+), Cu(2+).  相似文献   

14.
Synaptosomal key enzymes, ATPase (Na(+)-K+, Mg2+ and Ca2+ dependent) and AchE, were used as probes to compute IC50-values in order to study neurochemical effects of aluminium salts. Such effects were examined by means of the Toxicity Test Value (TTV), Maximum Chemical Acceptability Value (MCAV) and Omega (omega) value which indicated salt specific toxicity. Kinetics of Ca2(+)-ATPase inhibition by AlF3 was found to be non-competitive.  相似文献   

15.
The participation of Mg2+ and Ca2+ in complicated mechanisms of Na+, K(+)-ATPase regulation is discussed in the survey. The regulatory actions of Mg2+ on Na+, K(+)-ATPase such as its participation in phosphorylation and dephosphorylation of the enzyme, ADP/ATP-exchange inhibition, cardiac glycosides and vanadate binding with the enzyme, conformational changes induction during ATPase cycle are reviewed in detail. Some current views of mechanisms of above mentioned Mg2+ regulatory effects are discussed. The experimental evidence of Ca2+ immediate influence on the functional activity of Na+, K(+)-ATPase (catalytic, transport and glycoside-binding) are given. It's noted that these effects are based on the conformational changes in the enzyme and also on the phase transition in membrane induced by Ca2+. Unimmediate action of Ca2+ on Na+, K(+)-ATPase is also discussed, especially due to its effect on other membrane systems functionally linked with Na(+)-pump (for instance, due to Na+/Ca(+)-exchanger activation). It's concluded that Mg2+ and Ca2+ as "universal regulators" of the cell effectively influence the functional activity and conformational states of Na+, K(+)-ATPase.  相似文献   

16.
The reported effects of norepinephrine (NE) on brain Na+-K+ ATPase are quite variable. Different investigators have reported activation, inhibition, or no effect. An investigation of the importance of reaction conditions on brain Na+-K+ ATPase activity was undertaken to resolve some of these discrepancies. Using porcine cerebral cortical Na+-K+ ATPase and rat brain synaptosomal membrane preparations, it was observed that NE strongly inhibited brain Na+-K+ ATPase in Tris-HCl buffer. This inhibition of the enzyme was reversed by the addition of EDTA. In contrast, NE did not significantly inhibit Na+-K+ ATPase in imidazole-glycylglycine and Krebs-Ringer-phosphate buffers. This buffer dependence of NE inhibition of the enzyme was consistently demonstrated with three different established methods for phosphate measurement. Kinetic analysis indicated that NE, in Tris-HCl buffer, inhibited the enzyme noncompetitively at high affinity, and competitively at low affinity, ATP substrate sites.  相似文献   

17.
Sodium- and potassium-dependent adenosine triphosphatase (Na+--K+-ATPase) has been demonstrated in the branchial heart appendage (pericardial gland) of Sepia officinalis L. by biochemical, cytochemical and autoradiographical methods. The biochemical data indicate the presence of Na+--K+-ATPase, judging from the potassium dependency and, with some restrictions, the inhibition by ouabain. Cytochemically and autoradiographically, the enzyme could be localized on the cytoplasmic surfaces of the lateral plasma membranes and the basal membrane infoldings (basal labyrinth) of the folded epithelium of the branchial heart appendage. The pdocytes of the peripheral zone of the organ reacted negatively. In addition to the Na+--K+-ATPase, a magnesium-activated adenosine triphosphatase (Mg2+-ATPase) was demonstrated in the folded epithelium, localized mainly in the mitochondria but also at the brush border and in the apical intercellular space, whereas a bicarbonate-stimulated ATPase (HCO-3-ATPase) was present only in the mitochondria.  相似文献   

18.
In the present study, the expression of Na(+)-K(+) ATPase in the gerbil hippocampus associated with various sequelae of spontaneous seizures were investigated in order to identify the roles of Na(+)-K(+) ATPase in the epileptogenesis and the recovery mechanisms in these animals. The population of Na(+)-K(+) ATPase immunoreactive neurons and Na(+)-K(+) ATPase immunodensity were significantly lower in the pre-seizure group of SS gerbils than those in SR gerbils. At 30-min postictal, the Na(+)-K(+) ATPase immunoreactivity was significantly elevated in the hippocampal complex. At 3-h postictal, the Na(+)-K(+) ATPase immunoreactivity in the hippocampus was declined, as compared to the 30-min postictal. At 12h after seizure on-set, Na(+)-K(+) ATPase expression was re-enhanced in the all regions of the hippocampal complex including the dentate hilus. Following administration of vigabatrin Na(+)-K(+) ATPase expression was also increased. The present data suggest that altered Na(+)-K(+) ATPase expression may contribute the regulation of the seizure activity in this animal.  相似文献   

19.
We previously reported that the activity of the (Ca2+ + Mg2+)-dependent adenosine triphosphatase (ATPase) of the human erythrocyte membrane is inhibited by micromolar or nanomolar concentrations of cyclic AMP. Our further studies have now indicated that the inhibition of (Ca2+ + Mg2+)-dependent phosphohydrolase activity requires the participation of a membrane-associated cyclic AMP-dependent protein kinase and a membrane-associated protein substrate that is distinct from the ATPase itself. We have furthermore, identified a 20 kDa membrane protein which undergoes phosphorylation that is promoted by micromolar, but not millimolar, concentrations of cyclic AMP and which, when phosphorylated, undergoes dephosphorylation that is promoted by Ca2+. We suggest that this membrane component can participate in the modulation of the activity of the (Ca2+ + Mg2+)-dependent ATPase of the human erythrocyte.  相似文献   

20.
Mitochondrial proteins and phospholipids were estimated and SDH, Na(+)-K(+)-ATPase and Mg(2+)-ATPase activities were analysed in the gill, liver and heart tissues of PCB 1232 (sublethal doses) treated fish A. caelatus. Protein and phospholipids were found to be decreased significantly and SDH, Na(+)-K(+)-ATPase, Mg(2+)-ATPase and other enzyme systems displayed an inverse relationship with PCB dosage. Statistical analysis was carried out to indicate the relationship between sublethal doses of varying concentration and the activities of the enzyme systems involved in energy metabolism. The studies indicated impairment in mitochondrial functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号