首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Inheritance of evolved glyphosate resistance in Lolium rigidum (Gaud.)   总被引:5,自引:0,他引:5  
Resistance to the non-selective herbicide, glyphosate, has evolved recently in several populations of Lolium rigidum (Gaud.). Based upon the observed pattern of inheritance, glyphosate resistant and susceptible populations are most probably homozygous for glyphosate resistance and susceptibility, respectively. When these populations were crossed and the F1 progeny treated with glyphosate, the dose response behavior was intermediate to that of the parental populations. This observation, coupled with an absence of a difference between reciprocal F1 populations, suggests that glyphosate resistance is inherited as an incompletely dominant nuclear-encoded trait. The segregation of resistance in F1×S backcrosses suggests that the major part of the observed resistance is conferred by a single gene, although at low glyphosate treatments other genes may also contribute to plant survival. It appears from this study that a single nuclear gene confers resistance to glyphosate in one population of L. rigidum. Received: 17 May 2000 / Accepted: 1 September 2000  相似文献   

2.
In a project aimed to incorporate downy mildew resistance into sorghum hybrid seed parents, we screened F4 and F5 families for resistance to the ICRISAT Centre isolate of the pathogen using a greenhouse seedling screening technique. The families originated from a cross of 296B (susceptible) and IS 18757 [(QL-3) resistant]. The F4s were obtained from agronomic selection in F2s and F3s, and the F5 families from advancing plants identified as resistant in segregating F4 families. The resistant plants were more than double the number of susceptible plants in the F4 and almost so in the F5 suggesting that resistance to downy mildew was dominant. Of the four genetic models examined (a single-locus model and three two-locus models with complementary, inhibitory, and a combination of complementary and inhibitory interactions), the two-locus model with independent segregation and a combination of complementary and inhibitory inter-allelic interaction appeared to be most appropriate in explaining the segregation patterns within and among F4 and F5 families. Accordingly, for resistance to P. sorghi, the suggested genotypes for IS 18757 is PlaPlaPlbPlb and for 296B is PlaPlaPlbPlb.  相似文献   

3.
The mode of inheritance of resistance to bipyridyl herbicides in bipyridyl-resistant biotypes of Arctotheca calendula and of Hordeum leporinum was investigated. F1 plants from reciprocal crosses between diquat-resistant and -susceptible plants of A. calendula showed an intermediate response to diquat application that was nuclearly inherited. Treatment of F2 plants with 100 g ai ha-1 of diquat or 800 g ai ha-1 of paraquat killed all homozygous-susceptible plants, caused severe injury to heterozygous plants but only slight or no injury to homozygous-resistant plants. Back crosses of F1 to susceptible plants exhibited intermediate and susceptible phenotypes. The observed segregation ratios in F2 and test-cross populations fitted predicted segregation ratios, 1:2:1 (R:I:S) and 1:1 (I:S) respectively, showing that bipyridyl resistance is conferred by a single incompletely-dominant gene. Biotypes of paraquat-resistant and -susceptible H. leporinum were crossed reciprocally. F1 plants from reciprocal crosses showed an intermediate response to paraquat application. The F2 progeny showed segregation ratios that fitted the predicted segregation ratio of 1:2:1 (R:I:S) forinheritance of resistance being governed by a single partially-dominant gene.  相似文献   

4.
A biotype of Sonchus oleraceus L. (Compositae) has developed resistance to herbicides inhibiting acetolactate synthase (ALS) following field selection with chlorsulfuron for 8 consecutive years. The aim of this study was to determine the inheritance and mechanism of resistance in this biotype. Determination of ALS activity and inhibition kinetics revealed that Km and Vmax did not vary greatly between the resistant and susceptible biotypes. ALS extracted from the resistant biotype was resistant to five ALS-inhibiting herbicides in an in vitro assay. ALS activity from the resistant biotype was 14 19, 2, 3 and 3 times more resistant to inhibition by chlorsulfuron, sulfometuron, imazethapyr, imazapyr and flumetsulam, respectively, than the susceptible biotype. Hybrids between the resistant and a susceptible biotype were produced, and inheritance was followed through the F1, F2 and F3 generations. F1 hybrids displayed a uniform intermediate level of resistance between resistant and susceptible parents. Three distinct phenotypes, resistant, intermediate and susceptible, were identified in the F2 generation following chlorsulfuron application. A segregation ratio of 121 was observed, indicative of the action of a single, nuclear, incompletely dominant gene. F3 families, derived from intermediate F2 individuals, segregated in a similar manner. Resistance to herbicides inhibiting ALS in this biotype of S. oleraceus is due to the effect of a single gene coding for a resistant form of the target enzyme, ALS.  相似文献   

5.
A blackgrass population has developed resistance to fenoxaprop-P-ethyl following field selection with the herbicide for 6 consecutive years. Within this population, 95% of the individuals are also resistant to flupyrsulfuron. Both the inheritance(s) and the mechanism(s) of resistances were investigated by making crosses between the resistant and a susceptible biotype. The inheritance was followed through the F1 and F2 generations either by spraying the herbicide on seedlings at the three-leaf stage or using a seedling bioassay, based on coleoptile length. No maternal effects were evident in the fenoxaprop-P-ethyl responses of the F1 plants, suggesting that the inheritance was nuclear. Some F1 families treated with fenoxaprop-P-ethyl segregated in a 3:1 (resistant:susceptible) ratio, indicating that the resistance was conferred by two dominant and independent nuclear genes. This was confirmed by the 15:1 (R:S) ratio observed in the F2 generation treated with fenoxaprop- P-ethyl. The use of selective inhibitors of herbicide de-toxifying enzymes (aminobenzotriazole, pyperonylbutoxide, malathion and tridiphane) with the F2 plants suggested that each of the two genes may govern two different mechanisms of fenoxaprop-P-ethyl resistance: the ACCase mutation previously postulated and an enhanced herbicide metabolism, mediated by cytochrome P 450 mono-oxygenases (P 450) susceptible to malathion. The P 450 activity may also confer resistance to flupyrsulfuron. This study clearly indicates that two distinct mechanisms of resistance may co-exist in the same plant. Received: 18 August 2000 / Accepted: 6 December 2000  相似文献   

6.
Inheritance of resistance to the anti-microtubule dinitroaniline herbicides was investigated in a goosegrass biotype displaying an intermediate level of resistance (I). Reciprocal crosses were made between the I biotype and previously characterized susceptible (S) or resistant (R) biotypes. Eight F1 hybrids were identified, and F2 populations were produced by selfing. The dinitroaniline-herbicide response phenotype (DRP) of F1 plants, and F2 seedlings was determined using a root-growth bioassay. The DRP of F1 plants of S × I was “susceptible” (i.e., identical to the S parental plants), and the DRP of F1 plants of I × R was “intermediate” (i.e., identical to the I parental plants). Nonparental phenotypes were not observed in F1 plants. Results indicated susceptibility to be dominant over intermediate resistance and intermediate resistance to be dominant over high resistance. Analysis of reciprocal crosses ruled out any role for cytoplasmic inheritance. When treated at the discriminating concentration (e.g., 0.28 ppm oryzalin), F2 seedlings of S × I were classified as either S or I phenotype, and F2 seedlings of I × R were classified as either I or R phenotype. Again, nonparental phenotypes were not observed. The 3:1 (S:I or I:R) segregation ratios in F2 seedlings were consistent across all eight F2 families. The results show that dinitroaniline herbicide resistance in the I biotype of goosegrass is inherited as a single, nuclear gene. Furthermore, it suggests that dinitroaniline resistance in goosegrass is controlled by three alleles at a single locus (i.e., Drp-S, Drp-i, and Drp-r).  相似文献   

7.
Two soybean accessions, PI 587886 and PI 587880A, previously identified as having resistance to Phakospora pachyrhizi Syd. (soybean rust, SBR) were used to create two populations (POP-1 and POP-2) segregating for SBR resistance. F2-derived F3 (F2:3) families from each population were grown in a naturally SBR-infected field in Paraguay to determine inheritance and map resistance genes. Over 6,000 plants from 178 families in POP-1 and over 5,000 plants from 160 families in POP-2 were evaluated at R5 for lesion type: immune reaction (IR), reddish-brown (RB), or tan (TAN) colored lesions. Based on the lesion type present, each F2:3 family was rated as resistant, segregating or susceptible and this classification was used to infer the F2-phenotype and genotype. For both populations, the F2 segregation ratios fit a 1:2:1 (resistant:segregating:susceptible) ratio expected for a single gene (P > 0.05). The RB lesions occurred almost exclusively in the heterozygous class, indicating incomplete dominance under the conditions of this study. Molecular markers flanking the locations of the known resistance genes were used to map the resistance gene in both populations to the Rpp1 locus. However, evaluation of PI 587886 and PI 587880A against eight P. pachyrhizi isolates indicated that the resistance allele in these two accessions was different from Rpp1. This test also demonstrated that these accessions were resistant to at least one P. pachyrhizi isolate collected in the southern US. This is the first report of using an adult plant field-screen with natural rust pressure to map SBR resistance.  相似文献   

8.
Summary Inheritance of resistance to cowpea aphid, Aphis craccivora Koch, in three resistant cultivars of cowpea, Vigna unguiculata (L.) Walp, was studied. The parents, F1 and F2 population were grown in an insect-proof screenhouse. Each 3-day-old seedling was infested with 10 apterous adult aphids. Seedling reaction was recorded when the susceptible check was killed. The segregation data revealed that the resistance of ICV11 and TVU310 is governed by single dominant genes. All the F2 seedlings of the cross ICV10xTVU310 were resistant, indicating that they have the same gene for resistance. However, the F2 populations from the crosses ICV10xICV11 and ICV11xTVU310 segregated in a ratio of 151, indicating that the dominant genes in ICV11 and TVU310 are non-allelic and independent of each other. The resistance gene of ICV10 and TVU310 is designated as Ac1 and that of ICV11 as Ac2.  相似文献   

9.

Background

Cabbage Fusarium wilt is a major disease worldwide that can cause severe yield loss in cabbage (Brassica olerecea). Although markers linked to the resistance gene FOC1 have been identified, no candidate gene for it has been determined so far. In this study, we report the fine mapping and analysis of a candidate gene for FOC1 using a double haploid (DH) population with 160 lines and a F2 population of 4000 individuals derived from the same parental lines.

Results

We confirmed that the resistance to Fusarium wilt was controlled by a single dominant gene based on the resistance segregation ratio of the two populations. Using InDel primers designed from whole-genome re-sequencing data for the two parental lines (the resistant inbred-line 99–77 and the highly susceptible line 99–91) and the DH population, we mapped the resistance gene to a 382-kb genomic region on chromosome C06. Using the F2 population, we narrowed the region to an 84-kb interval that harbored ten genes, including four probable resistance genes (R genes): Bol037156, Bol037157, Bol037158 and Bol037161 according to the gene annotations from BRAD, the genomic database for B. oleracea. After correcting the model of the these genes, we re-predicted two R genes in the target region: re-Bol037156 and re-Bol0371578. The latter was excluded after we compared the two genes’ sequences between ten resistant materials and ten susceptible materials. For re-Bol037156, we found high identity among the sequences of the resistant lines, while among the susceptible lines, there were two types of InDels (a 1-bp insertion and a 10-bp deletion), each of which caused a frameshift and terminating mutation in the cDNA sequences. Further sequence analysis of the two InDel loci from 80 lines (40 resistant and 40 susceptible) also showed that all 40 R lines had no InDel mutation while 39 out of 40 S lines matched the two types of loci. Thus re-Bol037156 was identified as a likely candidate gene for FOC1 in cabbage.

Conclusions

This work may lay the foundation for marker-assisted selection as well as for further function analysis of the FOC1 gene.  相似文献   

10.
The Roegneria kamoji accession ZY 1007 was resistant to the mixed predominant races of Puccinia striiformis f.sp. tritici (Pst) in China based on field tests at adult‐plant stage. The seedling resistance evaluation of ZY 1007 showed that it was resistant to stripe rust physiological strains CYR29, CYR33 and PST‐V26, which were the predominant races of Pst in China. The female parent R. kamoji cv. Gansi No.1 (susceptible to Pst) was crossed with ZY 1007 (resistant to Pst). Parents, F1 and F2 populations were tested in a field inoculated with the mixed urediniospores. ZY 1007 and all the observed 11 F1 hybrid plants were resistant, while plants of Gansi No.1 were susceptible. Among the 221 F2 plants, 168 plants were resistant and 53 were susceptible, and the segregation of resistant and susceptible plants fits 3R:1S ratio (χ2 = 0.074, P > 0.75). It confirmed that the resistance of stripe rust in ZY 1007 was controlled by a single dominant gene and temporarily designated as YrK1007.  相似文献   

11.
Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean   总被引:8,自引:0,他引:8  
Fu S  Zhan Y  Zhi H  Gai J  Yu D 《Genetica》2006,128(1-3):63-69
Soybean mosaic virus (SMV) is one of the most prevalent pathogens that limit soybean production. In this study, segregation ratios of resistant plants to susceptible plants in P1, P2, F1, F2 populations of Kefeng No. 1 (P1)×Nannong 1138-2 (P2) and derived RIL populations, were used to study the inheritance of resistance to the SMV strain SC-7. Populations Kefeng No. 1 and F1 were found to be completely resistant to this SMV strain while Nannong 1138-2 was susceptible to it. The F2 and RIL populations segregated to fit a ratio of 3:1 and 1:1for resistant plants to susceptible ones, respectively. These results indicated that a single dominant gene, designated as Rsc-7, controlled resistance to the SMV strain SC-7 in Kefeng No.1. SSR markers were used to analyze the RIL population and MAPMAKER/EXP 3.0b was employed to establish linkage between markers and this resistance gene. Combining the data of SSRs and resistance identification, a soybean genetic map was constructed. This map, covering 2625.9 cM of the genome, converged into 24 linkage groups, consisted of 221 SSR markers and the resistance gene Rsc-7. The Rsc-7 gene was mapped to the molecular linkage group G8-D1b+W. SSR markers Satt266, Satt634, Satt558, Satt157, and Satt698 were found linked to Rsc-7 with distances of 43.7, 18.1, 26.6, 36.4 and 37.9 cM, respectively.  相似文献   

12.
Summary The genetics of paraquat-resistance in Conyza bonariensis was studied. Reciprocal crosses were prepared between resistant and sensitive individuals. The enzymes of the pathway that detoxifies superoxide to innocuous oxygen species involved in resistance were evaluated in the F1 and F2 generations. All F1 plants were as resistant as the resistant parent, irrespective of parental sex, demonstrating dominance and excluding maternal inheritance. The activities of superoxide-dismutase, ascorbate-peroxidase and glutathione-reductase in the F1 were constitutively as high as in the resistant parent. Resistance in the F2 generation was distributed in a 31 ratio (resistant to sensitive). Leaves from F2 plants were removed for a resistance assay and enzyme immuno-assays of single plants were performed. The high levels of superoxide-dismutase and glutathione-reductase, the two enzymes for which antibodies were available, were similar in resistant individuals to the levels in the resistant parent; the levels were low in the susceptible individuals. These results indicate either a very tight linkage, or more probably, that one dominant nuclear gene controls resistance by pleiotropically controlling the levels of enzymes of the activeoxygen detoxification pathway.  相似文献   

13.
Six hundred and one lines from the John Innes Pisum germplasm collection were surveyed for resistance to downy mildew (Peronospora pisi). Potential sources of resistance were identified in forty-seven lines. Using the inoculation methods described resistant varieties/lines showed no evidence of infection. Isolates from recent outbreaks in the United Kingdom when screened against a representative test array of resistant and susceptible lines showed no evidence for a race structure in Peronospora pisi, although differences were found in overall virulence. The inheritance of resistance was studied in F2 and F3 families. Under the test conditions adopted the results obtained suggest that resistance may either be determined by a single dominant gene or by two recessive genes, but the lack of concordance between F2 and F3 segregation patterns was a disturbing feature despite careful control of experimental conditions. This, coupled with difficulties in obtaining large F3 families presents considerable problems in interpretation. It is proposed that inbred lines of JI 411 Cobri and JI 399 Cennia be adopted as standards.  相似文献   

14.
Resistance to Phytophthora sojae isolate PsMC1 was evaluated in 102 F2∶3 families derived from a cross between the resistant soybean cultivar Wandou 15 and the susceptible cultivar Williams and genotyped using simple sequence repeat (SSR) markers. The segregation ratio of resistant, segregating, and susceptible phenotypes in the population suggested that the resistance in Wandou 15 was dominant and monogenic. Twenty-six polymorphic SSR markers were identified on soybean chromosome 17 (Molecular linkage group D2; MLG D2), which were linked to the resistance gene based on bulked segregation analysis (BSA). Markers Sattwd15-24/25 and Sattwd15-47 flanked the resistance gene at a distance of 0.5 cM and 0.8 cM, respectively. Two cosegregating markers, Sattwd15-28 and Sattwd15-32, were also screened in this region. This is the first Rps resistance gene mapped on chromosome 17, which is designated as Rps10. Eight putative genes were found in the mapped region between markers Sattwd15-24/25 and Sattwd15-47. Among them, two candidate genes encoding serine/threonine (Ser/Thr) protein kinases in Wandou 15 and Williams were identified and sequenced. And the differences in genomic sequence and the putative amino acid sequence, respectively, were identified within each candidate gene between Wandou 15 and Williams. This novel gene Rps10 and the linked markers should be useful in developing soybean cultivars with durable resistance to P. sojae.  相似文献   

15.
Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an important group of pulse crops. The viral disease is transmitted through the white fly, Bemicia tabaci, and the yield of the plants is affected drastically. YMV-tolerant lines, generated from a single YMV-tolerant plant identified in the field within a large population of the susceptible cultivar T-9, were crossed with T-9, and F1, F2 and F3 progenies raised. The different generations were phenotyped for YMV-reaction by forced inoculation using viruliferous white flies. A monogenic recessive control of YMV-tolerance was revealed from the F2 segregation ratio of 3:1 (susceptible: tolerant), which was confirmed by the segregation ratio of the F3 families. Of 24 pairs of resistance gene analog (RGA) primers screened, only one pair, RGA 1F-CG/RGA 1R, was found to be polymorphic among the parents. Selected F2 individuals and F3 families were genotyped with the polymorphic RGA primer pair and the polymorphism was found to be linked with YMV-reaction. This primer pair amplified a 445bp DNA fragment only from homozygous tolerant and the heterozygous lines. The 445bp marker band was sequenced and named 'VMYR1'. The predicted amino acid sequence showed highly significant homology with the NB-ARC domain present in several gene products involved in plant disease resistance, nematode cell death and human apoptotic signaling. To the best of our knowledge, this is the first report of YMV-resistance linked DNA marker development in any crop species using segregating populations. This YMV-resistance linked marker is of potential commercial importance in resistance breeding of plants.  相似文献   

16.
Host plant resistance is an important strategy for managing root-knot nematode (Meloidogyne incognita) in cotton (Gossypium L.). Here we report evidence for enhanced resistance in interspecific crosses resulting from transgressive segregation of clustered gene loci. Recently, a major gene, rkn1, on chromosome 11 for resistance to M. incognita in cv. Acala NemX was identified using an intraspecific G. hirsutum cross with susceptible cv. Acala SJ-2. Using interspecific crosses of Acala NemX × susceptible G. barbadense cv. Pima S-7, F1, F2, F2:3, backcross, and testcross Acala NemX × F1 (Pima S-7 × SJ-2), parental entries and populations were inoculated in greenhouse tests with M. incognita. Genetic analyses based on nematode-induced root galling and nematode egg production on roots, and molecular marker analysis of the segregating interspecific populations revealed that gene rkn1 interacted with a gene (designated as RKN2) in susceptible Pima S-7 to produce a highly resistant phenotype. RKN2 did not confer resistance in Pima S-7, but when combined with rkn1 (genotype Aa or aa), high levels of resistance were produced in the F1 and segregating F2, F3, and BC1F1 populations. One SSR marker MUCS088 was identified tightly linked to RKN2 within 4.4 cM in a NemX × F1 (Pima S-7 × SJ-2) testcross population. Using mapped SSR markers and interspecific segregating populations, MUCS088 linked to the transgressive gene from the susceptible parent and was located in the vicinity of rkn1 on chromosome 11. Diverse genome analyses among A and D genome diploid and tetraploid cottons revealed that marker MUCS088 (165 and 167 bp) is derived from G. arboreum, A2 diploid genome. These results demonstrated that a highly susceptible parent contributed to nematode resistance via transgressive segregation. Derived highly resistant lines can be used as improved resistance sources in cotton breeding, and MUCS088 can be used to monitor RKN2 introgression in diverse populations. The close genomic location of the transgressive resistance determinants provides an important model system for studying transgressive segregation and epistasis in plants.  相似文献   

17.
Wheat (Triticum aestivum) gene Lr12 provides adult-plant race-specific resistance to leaf rust caused by Puccinia triticina. It is completely linked or identical to Lr31, which confers seedling resistance only when the complementary gene Lr27 is also present. F2 and F2-derived F3 families were developed from a cross between the susceptible variety Thatcher and TcLr12, an isoline carrying Lr12. Of 230 F3 families, 55 were homozygous resistant, 115 were segregating for resistance, and 60 were susceptible to P. triticina, fitting a monogenic 1:2:1 segregation ratio. Lr12 was mapped on chromosome arm 4BL and was flanked by markers Xgwm251 and Xgwm149 at distances of 0.9 and 1.9 cM, respectively. Using linked markers and wheat deletion stocks, Lr12 was located in deletion bin 4BL-5, FL = 0.86–1.0, comprising the terminal 14% of 4BL. The markers will be useful for following Lr12/Lr31 in crosses and for further mapping studies.  相似文献   

18.
 A sequence-tagged-site (STS) marker is reported linked to Lr28, a leaf rust resistance gene in wheat. RAPD (random amplified polymorphic DNA) analysis of near-isogenic lines (NILs) of Lr28 in eight varietal backgrounds was carried out using random primers. Genomic DNA enriched for low-copy sequences was used for RAPD analysis to overcome the lack of reproducibility due to the highly repetitive DNA sequences present in wheat. Of 80 random primers tested on the enriched DNA, one RAPD marker distinguished the NILs and the donor parent from the susceptible recurrent parents. The additional band present in resistant lines was cloned, sequenced, and STS primers specific for Lr28 were designed. The STS marker (Indian patent pending: 380 Del98) was further confirmed by bulk segregation analysis of F3 families. It was consistently present in the NILs, the resistant F3 bulk and the resistant F3 lines, but was absent in recurrent parents, the susceptible F3 bulk and the susceptible F3 lines. Received: 20 February 1998 / Accepted: 4 March 1998  相似文献   

19.
Clubroot disease, caused by Plasmodiophora brassicae Wor., is highly damaging for Chinese cabbage. The CR (clubroot resistant) Shinki DH (doubled haploid) line of Chinese cabbage carries a single dominant gene, CRb, which confers resistance to the P. brassicae races 2, 4, and 8. An F2 population derived from a cross between the CR Shinki DH line and a susceptible line, 94SK, was used to map the CRb gene. Inoculation of F3 families with SSI (single-spore isolate) resulted in a 1:2:1 segregation ratio. Use of the AFLP technique combined with bulked segregant analysis allowed five co-dominant AFLP markers, and four and seven dominant AFLP markers linked in coupling and repulsion, respectively, to be identified. Six of the 16 AFLP markers showing low frequencies of recombination with the CRb locus among 138 F2 lines were cloned. A reliable conversion procedure allowed five AFLP markers to be successfully converted into CAPS and SCAR markers. An F2 population (143 plants) was analyzed with these markers and a previously identified SCAR marker, and a genetic map around CRb covering a total distance of 6.75 cM was constructed. One dominant marker, TCR09, was located 0.78 cM from CRb. The remaining markers (TCR05, TCR01, TCR10, TCR08, and TCR03) were located on the other side of CRb, and the nearest of these was TCR05, at a distance of 1.92 cM.Communicated by R. Hagemann  相似文献   

20.
A. Q. van Zon  W. Helle 《Genetica》1966,37(1):181-185
The inheritance of resistance to parathion in the Pacific spider mite was investigated by means of a backcross. A 1:1 ratio of a susceptible and a resistant class indicated the existence of a single dominant gene for resistance.Since the susceptible parental strain was marked with a recessive for albinism, information was obtained of the genetic relationship between the gene for resistance (R p ) and the gene for albinism (p). The segregation of resistant (R p r p ) and susceptible (r p rp) classes in pigmented (p+p) and albino (pp) animals revealed that there was no linkage between these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号