首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies are reported of the biochemical and pharmacological characteristics of the stimulation of phosphatidylinositol metabolism that is produced in appropriate target tissues by stimulation of various receptors that use Ca(2+) as their second messenger. (1) Muscarinic cholinergic and alpha-adrenergic phosphatidylinositol responses were observed in rat lacrimal gland, and a response to caerulein was detected in the longitudinal smooth muscle of guinea-pig ileum. (2) The muscarinic cholinergic phosphatidylinositol response of rat lacrimal gland, like that of several other tissues, is not dependent on the availability of extracellular Ca(2+). (3) Three phosphatidylinositol responses, namely to histamine in guinea-pig ileum smooth muscle, to alpha-adrenergic stimulation in rat vas deferens and to muscarinic cholinergic stimulation in rat lacrimal gland, were all found to involve phosphatidylinositol breakdown. (4) The stereospecificity of the muscarinic receptor responsible for the phosphatidylinositol response of guinea-pig pancreas was tested by using the two stereoisomeric forms of acetyl-beta-methylcholine; the S-isomer was very much more active than the R-isomer in provoking both phosphatidylinositol breakdown and its labelling with (32)P, as it is in provoking other physiological responses such as contractility or secretion. (5) Pilocarpine, a muscarinic partial agonist, provoked a significantly smaller phosphatidylinositol breakdown in rat parotid fragments than did carbamoylcholine, a potent muscarinic agonist. (6) All of these results are consistent with, but do not prove, a previously offered hypothesis that suggests that phosphatidylinositol breakdown is a reaction essential to stimulus-response coupling at a variety of cell-surface receptors that mobilize Ca(2+) from and through the plasma membranes of target tissues.  相似文献   

2.
Stimulation of rabbit neutrophils prelabeled with 32P by the synthetic chemotactic peptide f-Met-Leu-Phe induces a rapid decrease in the radioactivity in both phosphatidylinositol, 4,5 bis phosphate and phosphatidylinositol 4-monophosphate. The mean +/- standard error of the mean values of the maximum decrease in phosphatidylinositol, 4,5 bis phosphate occurred at 10 seconds following stimulation and is equal to 19 +/- 3% of the control value. The corresponding value for phosphatidylinositol 4-monophosphate occurred at 60 seconds following stimulation and is equal to 37 +/- 7% of the control value. On the other hand, the radioactivity in phosphatidic acid and lysophospholipids increased continuously with time following stimulation. The relationship of these changes to calcium release and neutrophil activation is discussed.  相似文献   

3.
The purpose of the present experiments was to compare the effects on phosphatidylinositol metabolism of agents stimulating aldosterone secretion. Glomerulosa cells, isolated from rat adrenals, were incubated in the presence of one of the following stimuli: angiotensin II, elevated potassium concentration, corticotropin, dibutyryl cyclic AMP and prostaglandin E2. Of all these substances, only angiotensin II stimulated the incorporation of [32P]phosphate into phosphatidylinositol. The effect was already detected 2.5 min and was still maintained 60 min after the onset of stimulation. A slight enhancement of the incorporation into other phospholipids was observed in the first minutes of stimulation. Cycloheximide abolished the effect of angiotensin II on aldosterone production, but not on phosphatidylinositol synthesis. In cells prelabelled with [32P]phosphate, radioactivity in phosphatidylinositol relative to that in other phospholipids decreased in response to angiotensin II within 5 min. This indicates that angiotensin II induces a specific breakdown of phosphatidylinositol. Corticotropin failed to enhance the incorporation of [32P]phosphate into phosphatidylinositol and other phospholipids in isolated fasciculate-reticularis cells. The results suggests that although both angiotensin II and potassium are presumed to act through changes in calcium metabolism, angiotensin alone generates the calcium signal by increased phosphatidylinositol turnover.  相似文献   

4.
Pancreatic microsomes were isolated from fasted and pilocarpine-injected rats and the microsomal phosphatidylinositol radiolabelled with myo-[2-3H]inositol by isotopic exchange. A standard reaction mixture was established in which partially purified rat liver phosphatidylinositol exchange proteins sustain a maximal rate of phosphatidylinositol transfer from rat pancreatic microsomes to liposomes. Determination of the transfer kinetics shows (1) that pancreatic microsomal phosphatidylinositol is partitioned approximately equally between a non-exchangeable and a single exchangeable pool and (2) that cholinergic stimulation does not significantly change the relative sizes of the two pools nor the exchange half-life of the latter pool.  相似文献   

5.
When rat parotid fragments that had been labelled with (32)P in vivo were exposed to high concentrations of acetylcholine, radioactivity was lost from phosphatidylinositol but not from other phospholipids. Simultaneously the concentration of phosphatidylinositol in the tissue decreased. If previously unlabelled tissue was incubated with (32)P(i) an increase in incorporation of radioactivity into phosphatidylinositol was observed during this decrease in concentration. The effects of acetylcholine were blocked by atropine, but not by tubocurarine. The response to acetylcholine was rapid, with up to one-third of the tissue's phosphatidylinositol disappearing within 5min. Similar effects were evoked by stimulation with methacholine and by high concentrations of tetramethylammonium ion; these responses were also atropine-sensitive and tubocurarine-insensitive. It is concluded that the event in inositol lipid metabolism that is affected by acetylcholine stimulation is removal of the phosphorylinositol group from the molecule; this is mediated through muscarinic cholinergic receptors. This is followed by a compensatory increase in the rate of synthesis of phosphatidylinositol, which has been described in detail in the past. These observations are compared with those of previous workers and are discussed in relation to the existing hypotheses relating to the significance of stimulus-provoked phosphatidylinositol turnover.  相似文献   

6.
The possibility that Ca2+ ions are involved in the control of the increased phosphatidylinositol turnover which is provoked by alpha-adrenergic or muscarinic cholinergic stimulation of rat parotid-gland fragments has been investigated. Both types of stimulation provoked phosphatidylinositol breakdown, which was detected either chemically or radiochemically, and provoked a compensatory synthesis of the lipid, detected as an increased rate of incorporation of 32Pi into phosphatidylinositol. Acetylcholine had little effect on the incorporation of labelled glycerol, whereas adrenaline stimulated it significantly, but to a much lower extent than 32P incorporation: this suggests that the response to acetylcholine was entirely accounted for by renewal of the phosphorylinositol head-group of the lipid, but that some synthesis de novo was involved in the response to adrenaline. The responses to both types of stimulation, whether measured as phosphatidylinositol breakdown or as phosphatidylinositol labelling, occurred equally well in incubation media containing 2.5 mm-Ca2+ or 0.2 mm-EGTA [ethanedioxybis(ethylamine)-tetra-acetic acid]. Incubation with a bivalent cation ionophore (A23187) led to a small and more variable increase in phosphatidylinositol labelling with 32Pi, which occurred whether or not Ca2+ was available in the extracellular medium: this was not accompanied by significant phosphatidylinositol breakdown. Cinchocaine, a local anaesthetic, produced parallel increases in the incorporation of Pi and glycerol into phosphatidylinositol. This is compatible with its known ability to inhibit phosphatidate phosphohydrolase (EC 3.1.3.4) and increase phosphatidylinositol synthesis de novo in other cells. These results indicate that the phosphatidylinositol turnover evoked by alpha-adrenergic or muscarinic cholinergic stimuli in rat parotid gland probably does not depend on an influx of Ca2+ into the cells in response to stimulation. This is in marked contrast with the K+ efflux from this tissue, which is controlled by the same receptors, but is strictly dependent on the presence of extracellular Ca2+. The Ca2+-independence of stimulated phosphatidylinositol metabolism may mean that it is controlled through a mode of receptor function different from that which controls other cell responses. Alternatively, it can be interpreted as indicating that stimulated phosphatidylinositol breakdown is intimately involved in the mechanisms of action of alpha-adrenergic and muscarinic cholinergic receptor systems.  相似文献   

7.
Thrombin and certain prostaglandins are both capable of stimulating the proliferation of cultured cells. Since thrombin stimulates the release and metabolism of arachidonic acid, the precursor of prostaglandins, we examined the relationship between this release and metabolism and the stimulation of cell division in cultured fibroblasts. We also examined the role of prostaglandin synthesis in thrombin-stimulated phosphatidylinositol synthesis. The data in this report demonstrate that the release and metabolism of arachidonic acid are not necessary for thrombin-stimulated cell division. The presence of a low concentration of chymotrypsin prevented thrombin-stimulated arachidonic acid release and metabolism without affecting the stimulation of cell division. Furthermore, thrombin-stimulated cell division occurred in the presence of indomethacin concentrations that prevented cyclooxygenase-mediated metabolism of arachidonic acid. The following experiments showed that thrombin-stimulated phosphatidylinositol synthesis was brought about by a cyclooxygenase-mediated metabolite(s) of arachidonic acid. Indomethacin inhibited the cyclooxygenase-mediated metabolism of arachidonic acid without affecting the thrombin-stimulated release of arachidonic acid. Indomethacin also inhibited thrombin-stimulated phosphatidylinositol synthesis. The dose dependence of this inhibition paralleled the inhibition by indomethacin of cyclooxygenase-mediated metabolism of arachidonic acid. In addition, prostaglandin F2 alpha stimulated phosphatidylinositol synthesis in the presence of indomethacin concentrations which prevented thrombin-stimulated phosphatidylinositol synthesis.  相似文献   

8.
Muscarinic and α-adrenergic stimulation of rat parotid acinar cells increases the turnover of phosphatidylinositol and phosphatidic acid. It is thought that this is initiated by hydrolysis of phosphatidylinositol, which would predict an increase in 32P incorporation into phosphatidic acid before phosphatidylinositol. We have demonstrated an increase in 32P incorporation into the former within 1 minute and into the latter by 2 minutes. The initial rapid rate of 32P incorporation into phosphatidic acid slows, and the 32P content reaches a steady state after 15 minutes. During the first 2 minutes after the addition of atropine to carbamylcholine stimulated cells, 32P is lost from phosphatidic acid, and an equal amount is gained by phosphatidylinositol, after which 32P incorporation equals that of the control. In cells prelabelled with 32P, carbamylcholine, in the presence of oligomycin stimulated the loss of 32P from phosphatidylinositol but had no effect on phosphatidic acid.  相似文献   

9.
Vasopressin stimulates the incorporation of [32P]Pi into phosphatidylinositol but not into other phospholipids in rat thoracic aorta strips. The relative abilities of three vasopressin analogues to stimulate phosphatidylinositol labelling in rat aorta are similar to their relative pressor potencies in vivo and to their relative potencies in stimulating the metabolism of rat hepatocytes, but very different from their relative antidiuretic potencies. The vasopressor antagonist [1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid),8-arginine]vasopressin competitively inhibits [Arg8]vasopressin-stimulated phosphatidylinositol labelling in rat aorta with a pA2 of 8.1. It is concluded that the Ca2+-mobilizing vasopressin receptors (V1-receptors) of the rat aorta stimulate phosphatidylinositol metabolism, probably by enhancing phosphatidylinositol breakdown.  相似文献   

10.
The effect of glucose on phosphatidylinositol turnover was studied. Phosphatidylinositol of rat pancreatic islets was labeled with myo[2-3H]inositol in the presence of various secretagogues (16.7 mM D-glucose, 22 mM D-mannose, 20 mM D-glyceraldehyde) and nonsecretagogues (3.3 mM D-glucose, 20 mM pyruvate, 16.7 mM D-galactose, 16.7 mM L-glucose). Upon subsequent stimulation with 16.7 mM D-glucose, only the islets that were labeled in the presence of secretagogues showed a loss of radioactivity from phosphatidylinositol. No loss of radioactivity from phosphatidylinositol occurred in the presence of 3.3 mM D-glucose even after labeling in the presence of secretagogues. A comparison of the subcellular distribution of labeled phosphatidylinositol in islets before and after stimulation with insulinotropic glucose revealed a loss of radioactivity from the plasma membrane fraction as judged by subcellular fractionation with a sucrose gradient. These results support a hypothesis advanced previously that pancreatic islets contain a unique pool of phosphatidylinositol that undergoes rapid turnover only in the presence of insulinotropic concentrations of D-glucose or other secretagogues [R. S. Rana, R. J. Mertz, A. Kowlura, J. F. Dixon, L. E. Hokin, and M. J. MacDonald (1985) J. Biol. Chem. 260, 7861-7867]. On the basis of the subcellular fractionation studies reported here, the secretagogue-responsive phosphatidylinositol pool appears to be located primarily in the plasma membrane of pancreatic islets.  相似文献   

11.
1. Adrenergic agonists provoke a marked increase in labelling of phosphatidylinositol in fragments of rat parotid gland. 2. Adrenaline and phenylephrine (an adrenergic alpha-agonist) are effective stimulants, but isoprenaline (an adrenergic beta-agonist) is relatively ineffective. 3. The response evoked by phenylephrine or adrenaline is prevented by prior incubation of the tissue with phenoxybenzamine (an alpha-receptor blocking agent), but not by prior incubation with pindolol (a beta-receptor blocking agent). 4. Adrenergic stimulation of phosphatidylinositol metabolism in parotid gland is therefore mediated through alpha-receptors, in common with the adrenaline-induced K(+) efflux. It is not linked to enzyme secretion, which is triggered by stimulation of beta-receptors. 5. It is suggested that the stimulation of phospholipid metabolism that occurs in several other tissues in the presence of adrenaline or noradrenaline may also involve alpha-receptors.  相似文献   

12.
A stimulation of [3H]glycerol incorporation into phosphatidic acid and phosphatidylinositol was observed upon exposure of rat pancreatic islets to the nutrient secretagogues alpha-ketoisocaproate and glucose, or to the neurotransmitter stimuli carbamylcholine and cholecystokinin. These effects were associated with reduced labeling of phosphatidylcholine and, in some cases, phosphatidylethanolamine. The modified patterns of [3H]glycerol incorporation into islet phospholipids persisted in the absence of added Ca2+, but were abolished by excess EDTA. Nutrient, but not neurotransmitter, secretagogues also stimulated the incorporation of [3H]glycerol into triacylglycerols. The results suggest that the stimulation of islets with the above classes of secretagogues is accompanied by enhanced de novo synthesis of acidic phospholipids.  相似文献   

13.
M Lupu  Y Oron 《FEBS letters》1983,162(1):133-136
[3H]inositol and 32Pi were simultaneously incorporated into rat parotid phosphatidylinositol. The ratio of [3H]/32Pi incorporation dropped dramatically following stimulation with muscarinic or alpha-adrenergic agonists and returned to control values following the addition of appropriate antagonists. The drop in [3H]/32Pi ratio can be explained by a rapid increase in de- novo synthesis of phosphatidylinositol following its receptor-mediated breakdown. The change in this ratio also provided evidence for the existence of CDP-DG + inositol in equilibrium phosphatidylinositol exchange reaction in the intact tissue.  相似文献   

14.
The phosphorylation of phosphatidylinositol in plasma membranes from A431 cells was investigated using [gamma-32P]ATP as the substrate. Phosphatidylinositol 4-phosphate was found to be the major product after an incubation time of 5-10 min. Little, if any, phosphatidylinositol 4,5-bisphosphate was found under these conditions. Epidermal growth factor (EGF) had no effect on the formation of phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate. On the other hand, the polyamines spermidine and spermine stimulated the phosphatidylinositol kinase activity about eightfold yielding almost exclusively phosphatidylinositol 4-phosphate as the reaction product. Half-maximum stimulation by spermidine occurred under near physiological conditions (1.5 mM). Furthermore various proteins and amino acid polymers containing clustered basic amino acid residues (e.g. histones and polylysine) stimulated the formation of phosphatidylinositol 4-phosphate to a similar extent. Half-maximal concentrations for the activation were considerably lower ranging from 1.5 microM to 80 microM. The ATP specificity of the phosphatidylinositol kinase(s) was investigated with a small set of selected ATP derivatives. In the presence of spermidine the specificity changed significantly indicating that (a) spermidine acts on a kinase and not on a phosphatase, (b) this activity is distinct from the EGF-receptor protein kinase activity. The results do not suggest an involvement of the EGF receptor in the growth-factor-dependent formation of phosphatidylinositol phosphates. It is proposed that the phosphorylation of phosphatidylinositol by polyamines might be a mechanism to replenish the pool of inositolphospholipids.  相似文献   

15.
When purified rat liver plasma membranes were incubated with norepinephrine, rat liver cytosol, and Ca2+, the amount of membrane-bound phosphatidylinositol was reduced by up to 50%. The levels of other major membrane phospholipids underwent negligible change. The decrease in phosphatidylinositol levels was not observed if norepinephrine was omitted or cytosol was absent. The disappearance of phospholipid persisted when soluble Ca2+ was depleted by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The decrease was prevented by phentolamine, benextramine, and prazosin, but not by sotalol. The results show that norepinephrine elicits a specific alpha 1-adrenergic receptor-mediated breakdown of phosphatidylinositol in isolated plasma membranes which is dependent on the presence of cytosol.  相似文献   

16.
The synthesis and turnover of phosphatidylinositol as well as clearance were studied in the intestines of lipodystrophic gerbils treated with or without an intraperitoneal dose of myo-inositol by monitoring the incorporation of 32Pi and the retention of absorbed [1-14C] palmitic acid. 1. myo-Inositol deficiency produced an intestinal lipodystrophy with a large lipid accumulation and a decreased level of phosphatidylinositol. Upon myo-inositol repletion, the intestinal phosphatidylinositol rapidly returned to the control level by h, at which time the removal of excess lipid still remained in a lag phase. 2. myo-Inositol injection caused an increase in the incorporation of 32Pi into phosphatidylinositol mainly due to an increased phosphatidylinositol synthesis de novo. As a result, the turnover of phosphatidylinositol molecules might increase because of an expanded pool size. 3. The stimulation of phosphatidylinositol synthesis was then followed by an enhanced clearance of absorbed [14C] palmitate and by an intestinal recovery which was monitored by the loss of accumulated triacylglycerol. 4. This study indicates that myo-inositol availability appears to regulate the in vivo biosynthesis of phosphatidylinositol which, in turn, may play a crucial role in normal lipid transport across gerbil intestine.  相似文献   

17.
CDP-diglyceride : inositol transferase was inhibited by unsaturated fatty acids. The inhibitory activity decreased in the following order: arachidonic acid greater than linolenic acid greater than linoleic acid greater than oleic acid greater than or equal to palmitoleic acid. Saturated fatty acids such as myristic acid, palmitic acid, and stearic acid had no effect. Calcium ion also inhibited the activity of CDP-diglyceride : inositol transferase. In rat hepatocytes, arachidonic acid inhibited 32P incorporation into phosphatidylinositol and phosphatidic acid without any significant effect on 32P incorporation into phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Ca2+ ionophore A23187 also inhibited 32P incorporation into phosphatidylinositol. However, 32P incorporation into phosphatidic acid was stimulated with Ca2+ ionophore A23187. Phosphatidylinositol-specific phospholipase C was activated by unsaturated fatty acids. Polyunsaturated fatty acids such as arachidonic acid and linolenic acid had a stronger effect than di- and monounsaturated fatty acids. Saturated fatty acids had no effect on the phospholipase C activity. The phospholipase C required Ca2+ for activity. Arachidonic acid and Ca2+ had synergistic effects. These results suggest the reciprocal regulation of phosphatidylinositol synthesis and breakdown by unsaturated fatty acids and Ca2+.  相似文献   

18.
1. Lysosomes from rat liver contain two enzymic systems for hydrolysing phosphatidyl-inositol: a deacylation via lysophosphatidylinositol producing glycerophosphoinositol and non-esterified fatty acid, and a phospholipase C-like cleavage into inositol 1-phosphate and diaclygycerol. 2. The separate enzyme systems involved can be distinguished by gel filtration, differential temperature-stability and the inhibitory action of detergents. 3. The enzyme systems both have pH optima at 4.8 and their attack on a pure phosphatidylinositol substrate is inhibited by many bivalent metals including Ca2+ and Mg2+, and cationic drugs. 4. Whereas the deacylation system will attack other glycerophospholipids, the phospholipase C shows a marked specificity towards phosphatidylinositol, although it will also slowly attach phosphatidylcholine with the liberation of phosphocholine. 5. Gel filtration and temperature-stability distinguish the phospholipase C from lysosomal phosphatidic acid phosphatase, but not from sphingomyelinase. 6. Evidence is presented that an EDTA-insensitive phospholipase C degrading phosphatidylinositol is present in rat brain.  相似文献   

19.
To help elucidate the possible role of phosphatidylinositol in the regulation of membrane permeability to Ca2+, the relationship in the rat parotid gland of phosphatidylinositol turnover to hormone receptor binding and to the hormone-mediated increase in K+ permeability (a Ca2+-dependent phenomenon) was investigated. The concentrations of adrenaline and substance P required to stimulate phosphatidylinositol turnover were found to be similar to those required for the Ca2+-mediated change in K+ permeability and for ligand binding. However, in the case of muscarinic (cholinergic) receptor stimulation, the phosphatidylinositol response was better correlated to the increase in membrane permeability to Ca2+, as determined by the change in K+ permeability, than to receptor occupation. Consistent with this relationship between the phosphatidylinositol response and Ca2+-channel activation were results obtained by simultaneous administration of maximal or submaximal concentrations of muscarinic and alpha-adrenergic agonists. The extent of 32P incorporation when stimulated by maximal concentrations of two agonists did not summate, but, rather, was intermediate between the response of either agonist alone. One interpretation for these observations is that the phosphatidylinositol response may not be related to receptor occupation or activation, but may be involved in the Ca2+-gating mechanism itself.  相似文献   

20.
Carbamylcholine produced a concentration-dependent stimulation of labelling of phosphatidylinositol and phosphatidic acid in rat islets of Langerhans following preincubation with 32PO43(-). The time course of these effects suggested that the initial action of carbamylcholine was to stimulate phosphatidic acid production, presumably by causing hydrolysis of phosphatidylinositol. This conclusion was substantiated by experiments in which islet phospholipids were pre-labelled with [3H]arachidonic acid. Under these conditions, carbamylcholine caused a loss of radioactivity from phosphatidylinositol, together with an increase in labelling of phosphatidic acid. The effects of carbamylcholine on islet phospholipid labelling were not dependent upon the presence of added Ca2+, but were abolished by EDTA and by atropine. An apparent stimulation of phosphatidylinositol and phosphatidic acid metabolism was also induced by cholecystokinin-pancreozymin, whereas glucagon, arginine, glibenclamide and thyrotropin had no significant effect. The data suggest that enhanced activity of the so-called phosphatidylinositol cycle may be an important event in regulating secretory activity of islets in response to certain neurotransmitter and hormonal stimuli. Furthermore, the results are compatible with the hypothesis that increased phospholipid metabolism may play a role in the modulation of ionic fluxes during stimulation by such agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号