首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have introduced a device for selecting Drosophila for increased resistance to very high concentrations of ethanol fumes. This device has enabled us to: 1) select quickly and easily over a thousand flies at a time, and 2) score the knockdown time of every fly in the distribution, while causing very little injury to the flies. A sample of nine west coast populations of Drosophila melanogaster showed a significant trend toward higher knockdown resistance in more northern populations. A population's level of knockdown resistance was virtually uncorrelated with its alcohol dehydrogenase (Adh) allele frequencies. Five of the above nine populations were then subjected to selection for further knockdown resistance. Each population was divided randomly into four groups of 256 flies: two lines to be selected, and two lines to remain unselected as control lines. In every generation each selected line was measured for knockdown resistance, and the last quartile of flies to be knocked down was saved to continue the selection cycle. Population sizes of the selected and unselected lines were all maintained at 256. Realized heritability, based on the responses to selection of the first four generations, was calculated for each selected line. The five populations were significantly heterogeneous for heritability estimates; the average heritability of the five populations pooled was 0.143 ± 0.019. Over the course of twelve generations, the ten selected lines increased their knockdown times by an average factor of 2.40. Before selection, the five populations were heterogeneous for knockdown resistance, and resistance was greatest among the most northern populations. The amount of change of knockdown resistance over the course of selection was also correlated with latitude: the most southern population increased its knockdown time by a factor of 2.23, and the most northern population increased it by a factor of 2.55. After ten generations of selection, the cline of knockdown resistance was about 4.5 times as steep as that before selection. Small phenotypic differences among populations before selection were thus exaggerated by the action of selection. The differences among populations in their rates of response to selection were attributed to genetic differences that existed before selection. The pattern of change of Adh frequencies over the course of selection was very inconsistent, both among and within populations. From this inconsistency of change of Adh alleles with selection, and the lack of correlation between Adh frequencies and knockdown resistance before selection, we concluded that Adh frequency changes could not have had much effect on the responses of the selected lines.  相似文献   

2.
Laboratory experiments on Drosophila have often demonstrated increased heritability for morphological and life‐history traits under environmental stress. We used parent–offspring comparisons to examine the impact of humidity levels on the heritability of a physiological trait, resistance to heat, measured as knockdown time at constant temperature. Drosophila melanogaster were reared under standard nonstressful conditions and heat‐shocked as adults at extreme high or low humidity. Mean knockdown time was decreased in the stressful dry environment, but there was a significant sex‐by‐treatment interaction: at low humidity, females were more heat resistant than males, whereas at high humidity, the situation was reversed. Phenotypic variability of knockdown time was also lower in the dry environment. The magnitude of genetic correlation between the sexes at high humidity indicated genetic variation for sexual dimorphism in heat resistance. Heritability estimates based on one‐parent–offspring regressions tended to be higher under desiccation stress, and this could be explained by decreased environmental variance of heat resistance at low humidity. There was no indication that the additive genetic variance and evolvability of heat resistance differed between the environments. The pattern of heritability estimates suggests that populations of D. melanogaster may have a greater potential for evolving higher thermal tolerance under arid conditions.  相似文献   

3.
To help us understand how adaptive tolerance to heat stress has evolved, we made F1 hybrid crosses and backcrosses amongst populations of Drosophila mojavensis, and tested their ability to fly after exposure to a debilitating, but non-lethal, heat stress. Previous work identified that these populations vary in thermotolerance as measured for a variety of traits. Hybrid superiority was observed when crossing all four pairs of strains. Patterns of inheritance in flight ability after stress varied depending on which strains were used to set up complete reciprocal backcrosses, and, for both population pairs, results supported a multigenic model. This quantitative inheritance may be an outcome of the many different physiological and biochemical systems recently shown to influence muscle activity during heat stress. Therefore, the ability to maintain flight in the presence of high temperatures has the potential to vary considerably among populations in nature. As effects occur at temperatures well below those causing mortality, variation in this trait may greatly impact organismal fitness.  相似文献   

4.
Responses to short-term selection for knockdown resistance to heat (37°C) in Drosophila melanogaster reared under stressful (high larval density) and nonstressful (low larval density) conditions were compared. No difference in selection response between density treatments was found. A test of heat resistance (39°C) after pretreatment (37°C) did not reveal an increase in survival for selected lines as compared to controls. Flies reared at high density had higher knockdown resistance throughout the experiment. Resistance to heat was not associated with body size.  相似文献   

5.
Lines of the fly Drosophila melanogaster were selected for increased knockdown resistance to heat (39 degrees C) in a long tube. One set of lines was selected following prior heat hardening (1 h at 37 degrees C) and another without hardening. Each set consisted of three replicate selection lines and three unselected controls. Lines were tested for correlated responses to selection, in order to define the nature of knockdown resistance. Selection had a large effect on knockdown resistance, but selected lines did not differ from controls for knockdown time in small vials, survival, or recovery time following exposure to heat. Selection with and without hardening influenced the hardening response in the long tube, but not in small vial assays of resistance. The hardened selection lines had decreased resistance to ethanol and a reduced dry weight, whereas the non-hardened lines did not show these changes. The same correlated responses were also evident in two generation experiments on unselected flies. Both sets of lines showed a reduction in activity when tested at 37 degrees C, but not at 25 degrees C. These results indicate that different measures of heat resistance are surprisingly unrelated, and suggest that subtle features of the selective environment influence responses and correlated responses to selection. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

6.
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot‐acclimation or non‐acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat‐shocked flies, but in the absence of heat stress hot‐acclimated flies had reduced life spans relative to non‐acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness‐related traits.  相似文献   

7.
To assess the trade‐offs associated with cold and heat tolerance, selection experiments were conducted on the rate of recovery from chill‐ and heat‐coma using Drosophila melanogaster. Flies were treated with cold and heat to induce coma, and those that showed rapid or slow recovery from coma were selected. The lines selected for rapid (or slow) recovery from chill‐coma also showed rapid (slow) recovery from heat‐coma, although such a correlation was not observed in the lines selected for the rate of recovery from heat‐coma. On the other hand, survival after cold was enhanced in both lines selected for rapid and slow recovery from chill‐coma, and survival after heat was enhanced in both lines selected for rapid and slow recovery from heat‐coma. It was assumed that cold and heat treatments to induce coma caused some damages to flies and those that were tolerant to cold or heat were unintentionally selected in the present coma‐based selection. Only a weak trade‐off was observed between survival‐based cold and heat tolerance. On the other hand, developmental time was prolonged and desiccation resistance, walking speed, and longevity were reduced in the lines selected for rapid and slow recovery from chill‐ and/or heat‐coma, suggesting that these resistance and life‐history traits are under trade‐offs with cold and/or heat tolerance. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 72–80.  相似文献   

8.
The ability of a sufficient number of individuals to disperse is crucial for long‐term survival of populations. However, dispersal is often energetically costly, and thus is expected to trade‐off against other life‐history traits. In insect pest species, the occurrence of individuals with high flight activity challenges management practices. We performed artificial selection on flight activity and measured correlated responses to selection in the oriental fruit moth, Grapholita (= Cydia) molesta, a widely distributed and expanding lepidopteran pest of fruit crops. Both sexes rapidly responded to the imposed regime of divergent selection, indicating an adaptive potential of flight activity in this species. Upward‐selected moths died sooner than downward‐selected ones, providing evidence for a cost of flight activity to adult survival, reputedly associated with enhanced metabolic rates. Oppositely‐selected females had similar total reproductive output, disproving a trade‐off between dispersal and reproduction, although females with higher flight activity laid their eggs sooner. The ratio of body weight to forewing surface (forewing loading) did not significantly differ between selected lines. The present study contributes to the understanding of dispersal evolution, and also provides new insights into life‐history theory as well as important baseline data for the improvement of pest management practices. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 879–889.  相似文献   

9.
With advancing global climate change, the analysis of thermal tolerance and evolutionary potential is important in explaining the ecological adaptation and changes in the distribution of invasive species. To reveal the variation of heat resistance and evolutionary potential in the invasive Mediterranean cryptic species of Bemisia tabaci, we selected two Chinese populations—one from Harbin, N China, and one from Turpan, S China—that experience substantial heat and cold stress and conducted knockdown tests under static high- and low-temperature conditions. ANOVAs indicated significant effects of populations and sex on heat knockdown time and chill coma recovery time. The narrow-sense heritability (h 2) estimates of heat tolerance based on a parental half-sibling breeding design ranged from 0.47±0.03 to 0.51±0.06, and the estimates of cold tolerance varied from 0.33±0.07 to 0.36±0.06. Additive genetic variances were significantly different from zero for both heat and cold tolerance. These results suggest that invasive B. tabaci Mediterranean cryptic species possesses a strong ability to respond to thermal selection and develops rapid resistance to climate change.  相似文献   

10.
The potential of populations to evolve in response to ongoing climate change is partly conditioned by the presence of heritable genetic variation in relevant physiological traits. Recent research suggests that Drosophila melanogaster exhibits negligible heritability, hence little evolutionary potential in heat tolerance when measured under slow heating rates that presumably mimic conditions in nature. Here, we study the effects of directional selection for increased heat tolerance using Drosophila as a model system. We combine a physiological model to simulate thermal tolerance assays with multilocus models for quantitative traits. Our simulations show that, whereas the evolutionary response of the genetically determined upper thermal limit (CTmax) is independent of methodological context, the response in knockdown temperatures varies with measurement protocol and is substantially (up to 50%) lower than for CTmax. Realized heritabilities of knockdown temperature may grossly underestimate the true heritability of CTmax. For instance, assuming that the true heritability of CTmax in the base population is h2 = 0.25, realized heritabilities of knockdown temperature are around 0.08–0.16 depending on heating rate. These effects are higher in slow heating assays, suggesting that flawed methodology might explain the apparently limited evolutionary potential of cosmopolitan D. melanogaster.  相似文献   

11.
Two stocks of Drosophila melanogaster, one sensitive (6.5% survival) and one resistant (76.24%) to heat shock (40°C/25 min) were derived through indirect selection [1]. Genetic analysis of heat-sensitive and heat-resistant lines we had selected revealed that the survival rate is chiefly determined by cytoplasmic inheritance but also depends to some extent on the nucleus [1]. The ability of the fly to survive thermal stress was found to have an excellent correlation with the kinetics of protein synthesis in ovaries or glands subjected to heat treatment. The incorporation rate of 35S-methionine into proteins was found to be higher for strains exhibiting higher survival (R1, R1S1) than for strains with a lesser ability (S1, S1 R1) to survive heat shock. Moreover, the intensity of labeling of the proteins synthesized and especially of the hsps (heat-shock proteins) after the heat shock is higher in the R1 and R1S1 stocks than in the S1 and S1R1 stocks. This convergence between survival and the cellular level of hsps (both manipulated by selection) bears on the physiological significance of these proteins which seems to participate in the control of the survival as an additive component.  相似文献   

12.
G. McColl  A. A. Hoffmann    S. W. McKechnie 《Genetics》1996,143(4):1615-1627
To identify genes involved in stress resistance and heat hardening, replicate lines of Drosophila melanogaster were selected for increased resistance to knockdown by a 39° heat stress. Two selective regimes were used, one with and one without prior hardening. Mean knockdown times were increased from ~5 min to >20 min after 18 generations. Initial realized heritabilities were as high as 10% for lines selected without hardening, and crosses between lines indicated simple additive gene effects for the selected phenotypes. To survey allelic variation and correlated selection responses in two candidate stress genes, hsr-omega and hsp68, we applied denaturing gradient gel electrophoresis to amplified DNA sequences from small regions of these genes. After eight generations of selection, allele frequencies at both loci showed correlated responses for selection following hardening, but not without hardening. The hardening process itself was associated with a hsp68 frequency change in the opposite direction to that associated with selection that followed hardening. These stress loci are closely linked on chromosome III, and the hardening selection established a disequilibrium, suggesting an epistatic effect on resistance. The data indicate that molecular variation in both hsr-omega and hsp68 contribute to natural heritable variation for hardened heat resistance.  相似文献   

13.
Global climate change is projected to increase the incidence of heat waves, their magnitude and duration resulting in insects experiencing increasing environmental stress in both natural and managed ecosystems. While studies on insect thermal tolerance are rapidly increasing, variation across developmental or juvenile stress cross-stage effects within and across generations remain largely unexplored. Yet in holometabolous insects, heat stress at an early developmental stage may influence performance and survival during later stages. Here, we investigated the effects of pupal mild heat stress on the performance of laboratory-reared adult Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) measured as longevity, critical thermal maximum (CTmax), critical thermal minima (CTmin), heat knockdown time (HKDT) and chill coma recovery time (CCRT). Pupal heat stress significantly influenced performance of B. dorsalis adults resulting in impaired longevity and heat tolerance (CTmax and HKDT) in both sexes with improved and compromised cold tolerance (CTmin and CCRT) in females and males, respectively. These findings highlight the role of juvenile stages in mediating stress responses at adult stages. For B. dorsalis, pupal heat stress largely compromised thermal tolerance implying that the species has limited potential to shift its geographic range in heat prone areas. Significant benefits in cold tolerance in females following heat stress may help in improving survival in the cold in the short-term despite restricted activity to the same traits in males. This study suggests that basal heat tolerance and not short-term compensatory thermal plasticity following heat stress may have aided the recent invasion of B. dorsalis in African landscapes.  相似文献   

14.
Direct and correlated responses in selection for heat-shock resistance in adult and in larval Drosophila buzzatii were studied. Two lines were artificially selected for higher survival to heat stress as adults, and two other lines were reared under a fluctuating thermal environment as larvae, 35°C for 6 h and 25°C for 18 h, to “naturally” select for higher resistance as larvae. The latter two lines were duplicated after nine generations to yield additional lines to be “naturally” selected as larvae at a higher temperature, 38.2°C for 6 h. Control lines were maintained separately for the adult and larval selection lines. A significant direct response to selection was found for the adult selection lines. However, larvae of these adult selection lines were no more heat resistant than were larvae of the control lines. One of the two larval selection lines increased significantly in heat resistance as larvae. However, adult heat resistance was similar for lines selected as larvae and the corresponding control lines maintained at 25°C. Changes in developmental time accompanied changes in survival after stress in both sets of lines selected for increased heat resistance.  相似文献   

15.
Thermal stress has been shown to result in decreased egg production, decreased eggshell quality, and ultimately millions of dollars in losses to the industry. Therefore, there are many factors to consider when implementing genetic selection programs aimed at improving egg production under tropical conditions. So, trial is trying to improve the productivity and eggshell quality traits of the Fayoumi chicken under high ambient temperatures via selection programs and gene expression. In the present study, day-old Fayoumi chicks were raised either under normal temperature (control) or conditions of thermal stress (the heated group). At 35 weeks, male and female chickens from the control group were mated randomly and females selected for higher egg production and eggshell strength were mated to male siblings to obtain the progeny of the first generation (F1). F1 birds were further selected and mated to obtain the progeny of the second generation. Our results show that egg production and eggshell strength traits improved over successive generations via selection under conditions of heat stress. Furthermore, the reduction in egg production and eggshell strength as a result of heat stress declined from one generation to the next in birds selected for good heat tolerance, and an inverse relationship was observed between the OC-17 and eggshell strength. Additionally, levels of HSP90 and gene expression increased in the two successive generations, indicating that both productivity and heat tolerance were enhanced due to selection in birds raised under conditions of thermal stress. Moreover, generation exerted an important effect on this trait. Thus, desirable traits such as improved heat tolerance in producing lines were observed in Fayoumi chickens exposed to conditions of thermal stress via selection. Therefore, modern advances in studies of poultry breeding and genetics, such as gene expression studies, should be examined.  相似文献   

16.
  1. Fire is an important cause of disturbance which directly shapes many ecosystems worldwide. While the effect of fire on the distribution and regeneration of plant species has been widely documented, little is known on how phytophagous insects are reacting to these disturbances.
  2. This study explores the survival strategies of various weevil species, a highly diverse phytophagous beetle group in fire-prone ecosystems of the biodiversity hotspot of the Cape Floristic Region in South Africa. More specifically, we investigated how the lifestyle of species (location of larval development, phenology of adults, and flight ability) correlates with heat tolerance. We hypothesized that wingless species in particular will show better tolerance to heat as they have a limited ability to escape fire rapidly and usually remain hidden in the soil.
  3. The thermal tolerance of a set of sixteen species with divergent lifestyles and geographic distribution was measured using a standard heat knockdown protocol at 48°C. Respirometry was then performed on the most resistant species using a ramping protocol in order to determine CTmax.
  4. Our results show that the species tested exhibit high variation in thermal tolerance across taxonomic groups, clustering into three modalities: weak, intermediate, and high tolerance to heat stress. In addition, life history traits (diurnal vs. nocturnal adult activity and location of juvenile stages in plant tissues) likely better explain thermal tolerance at the species level than flight ability or the fire-proneness of ecosystems. Finally, results revealed that some non-flying weevil species are highly heat tolerant with CTmax values reaching up to 50.2 and 51.9°C in species among the Ocladiinae and Brachycerinae subfamilies, respectively.
  5. Climate change is leading to an increase in the impact and frequency of fires. In this context, this study highlights the diversity of strategies developed by arthropods to escape extreme heat in fire prone ecosystems. Further work is necessary to examine the generality of these patterns across other fire prone ecosystems to better understand behavioural compensation and evolutionary responses, especially given the forecast increases in fire driven by drying and warming associated with climate change.
  相似文献   

17.
Summary Five experiments were conducted to assess the genetic variation in thyroid function (T3, T4), body weight and heat stress survival time in chickens. Thyroxine (T4) levels were found to be elevated in response to 4 and 8 g bovine thyroid stimulating hormone (TSH) in experiment I. In experiment II, 4 g of TSH was injected into chickens from 30 sire families of the Athens-Canadian Randombred population. The heritability of T4 levels after TSH injection was high. In experiment III, families identified as having innate high or low T4 levels after TSH injection and a group of control birds were subjected to a heat Stressor of 50 °C for up to 240 min at six weeks of age and heat stress survival time was studied. The groups did not differ from each other in heat stress survival time. Experiment IV was similar to experiment I except triiodothyronine (T3) was also measured after TSH injection. Both T4 and T3 levels after TSH injection were moderately heritable. In experiment V birds were reared to six weeks of age and heritability calculated for body weight, T4, T3, and heat stress survival time. Heritabilities were high for body weight, moderate for T4 and heat stress survival time, and low for T3. Phenotypic correlations were significant and negative for heat stress survival time with body weight and T4, and for body weight with T3 after TSH. Significant positive correlations were found for T4 with T3 after TSH and also T4 and body weight. Analysis of genetic correlations suggested that none of the traits studied would be an adequate selection parameter for achieving heat tolerance without reducing body weight.Supported by State and Hatch funds allocated to the Georgia Agricultural Experiment Stations of the University of Georgia  相似文献   

18.
Abstract  Cross tolerance, whereby tolerance to one environmental stress is correlated with tolerance to other stressors, is thought to be widespread in insects. We used lines of Drosophila melanogaster Meigen (Diptera: Drosophilidae) selected for survival at a 1-h exposure to −5°C to examine the extent to which this selection results in increased tolerance to other stresses, including high and low temperatures, desiccation and starvation. While selection improved tolerance to acute cold exposure and survival at −5°C, there was little effect of selection regime on tolerance to other stressors. There was no correlation between tolerances to any of the stressors, suggesting different mechanisms of tolerance. This supports arguments that correlations between stress tolerances during selection experiments with D. melanogaster may be coincidental. The magnitude of heat-hardening was apparently constrained by basal tolerance among lines, but the magnitude of the rapid cold-hardening response was not correlated with basal cold tolerance, implying that the relationship between inducible and basal tolerances differs at high and low temperatures.  相似文献   

19.
The beet armyworm, Spodoptera exigua, is an important migratory insect pest in tropical and subtropical regions worldwide. The current study investigated genetic variation in the flight capacity of both female and male moths, using a quantitative genetics approach. The offspring–parent regression showed that parents had a significant influence on the flight duration of offspring, and the heritability estimated as 0.302. The upward selection increased mean flight duration from 123.7 to 284.6 min in females and from 113.9 to 254.0 min in males during 8 h of flight test; by contrast, downward selection decreased it from 123.7 to 65.6 min in females and from 113.9 to 29.8 min in males, while it did not change significantly in either females or males of the control line over eight generations. The mean realized heritability was estimated as 0.432 based on upward selection but 0.130 on downward selection, suggesting the asymmetry of response to selection on flight capacity. Reciprocal crosses between the two selected lines confirmed the dominance of ‘long‐flying genes’ in the inheritance of flight capacity. A positive genetic correlation was found between increased flight duration and pupal weight. The presence of such additive genetic variance and covariance for flight capacity and the fitness trait, pupal weight, in the population of S. exigua may have underpinned the evolution of its migratory behaviour.  相似文献   

20.
Latitudinal clines are considered a powerful means of investigating evolutionary responses to climatic selection in nature. However, most clinal studies of climatic adaptation in Drosophila have involved species that contain cosmopolitan inversion polymorphisms that show clinal patterns themselves, making it difficult to determine whether the traits or inversions are under selection. Further, although climatic selection is unlikely to act on only one life stage in metamorphic organisms, a few studies have examined clinal patterns across life stages. Finally, clinal patterns of heat tolerance may also depend on the assay used. To unravel these potentially confounding effects on clinal patterns of thermal tolerance, we examined adult and larval heat tolerance traits in populations of Drosophila simulans from eastern Australia using static and dynamic (ramping 0.06 °C min?1) assays. We also used microsatellites markers to clarify whether demographic factors or selection are responsible for population differentiation along clines. Significant cubic clinal patterns were observed for adult static basal, hardened and dynamic heat knockdown time and static basal heat survival in larvae. In contrast, static, hardened larval heat survival increased linearly with latitude whereas no clinal association was found for larval ramping survival. Significant associations between adult and larval traits and climatic variables, and low population differentiation at microsatellite loci, suggest a role for climatic selection, rather than demographic processes, in generating these clinal patterns. Our results suggest that adaptation to thermal stress may be species and life‐stage specific, complicating our efforts to understand the evolutionary responses to selection for increasing thermotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号