首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Walz A  Seidel C  Rusak G  Park S  Cohen JD  Ludwig-Müller J 《Planta》2008,227(5):1047-1061
The seed protein IAP1 from bean (PvIAP1; Phaseolus vulgaris L.) that is modified by the phytohormone indole-3-acetic acid (IAA) was heterologously expressed in the two reference plant species Arabidopsis thaliana and Medicago truncatula. For the transformation of Medicago we devised a novel protocol using seedling infiltration. When PvIAP1 was overexpressed under the control of the constitutive 35SCaMV promoter in Arabidopsis, the plants showed signs of earlier bolting and enhanced branching. Expression of a fusion protein of PvIAP1 with both a green fluorescence protein (GFP) as reporter and 6× histidine (His) tag under the control of the native bean IAP1 promoter resulted in the accumulation of the protein in both plant species exclusively in seeds as shown by immunoblotting and by fluorescence microscopy. During seed development, PvIAP1 was first expressed in the vascular bundle of Arabidopsis, whereas in later stages GFP fluorescence was visible essentially in all tissues of the seed. Fluorescence decreased rapidly after imbibition in the seeds for both Arabidopsis and Medicago, although the fluorescence persisted longer in Arabidopsis. GFP fluorescence was distributed evenly between an organelle fraction, the microsomal membrane fraction, and the cytosol. This was also confirmed by immunoblot analysis. Clusters of higher GFP fluorescence were observed by confocal microscopy. Although PvIAP1 protein accumulated in seeds of both Arabidopsis and Medicago, neither species post-translationally modified the protein with an indoleacyl moiety as shown by quantitative GC–MS analysis after alkaline hydrolysis. These results indicate an apparent specificity for IAA attachment in different plant species. Alexander Walz and Claudia Seidel contributed equally to the paper.  相似文献   

2.
PRPs (proline-rich proteins) are a group of cell wall proteins characterized by their proline and hy- droproline-rich repetitive peptides. The expression of PRPs in plants is stimulated by wounding and environmental stress. GASA (gibberellic acid stimulated in Arabidopsis) proteins are small peptides sharing a 60 amino acid conserved C-terminal domain containing twelve invariant cysteine residues. Most of GASAs reported are localized to apoplasm or cell wall and their expression was regulated by gibberellins (GAs). It has been reported that, in French bean, these two proteins encoding by two distinct genes formed a two-component chitin-receptor involved in plant-pathogen interactions when plant was infected. We cloned a full-length cDNA of PRGL (proline-rich GASA-like) gene which encodes a protein containing both PRP and GASA-like domains. It is demonstrated that PRGL is a new protein with characteristics of PRP and GASA by analyzing its protein structure and gene expression.  相似文献   

3.
Free and conjugated indole-3-acetic Acid in developing bean seeds   总被引:8,自引:6,他引:2       下载免费PDF全文
The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed.  相似文献   

4.
Park S  Cohen JD  Slovin JP 《Planta》2006,224(5):1015-1022
Achenes and receptacle tissue of Fragaria vesca, L. cultivar Yellow Wonder were shown to contain conjugated indole-3-acetic acid (IAA) that was not soluble in organic solvents and yielded IAA after strong alkaline hydrolysis, suggestive of IAA attached to plant proteins. This solvent insoluble conjugated IAA accounted for between 0.4 and 4 ng of IAA per gram fresh weight of tissue in both achenes and receptacles. To investigate this strawberry conjugate class further, a polyclonal antibody was produced to IAA–glycine attached to BSA that detected neutral indole acid esters, monocarboxylic-amino acid IAA conjugates and IAA proteins. Using immunoblotting, both achenes and receptacles of strawberry were shown to have primarily an immuno-detectable band at 76 kDa. Two-dimensional polyacrylamide gel electrophoresis yielded a wide band that was analyzed by LC–MS/MS analysis following in-gel trypsin digestion. Peptides derived from the immuno-detectable band were tentatively identified by peptide fragment analysis as being from either a chaperonin related to the hsp60 class of proteins or, alternatively, an ATP synthase. This is one of the first reports of an IAA modified protein in fruit tissue.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Indole-3-acetyl-L-aspartic acid (IAA-Asp) is a natural product in many plant species and plays many important roles in auxin metabolism and plant physiology. IAA-Asp hydrolysis activity is, therefore, believed to affect plant physiology through changes in IAA metabolism in plants. We applied a newly discovered technique, arginine-rich intracellular delivery (AID), to deliver a bacterial IAA-Asp hydrolase into cells of mung bean (Vigna radiata) seeds and measured its effects on mung bean seed germination. IAA-Asp hydrolase inhibited seed germination about 12 h after the enzyme was delivered into cells of mung bean seeds both covalently and noncovalently. Mung bean seed germination was delayed by 36 h when the enzyme protein was noncovalently attached to the AID peptide and longer than 60 h when the enzyme protein was covalently attached to the AID peptide. Root elongation of mung bean plants was inhibited as much as 90% or 80%, respectively, when the IAA-Asp hydrolase was delivered with the AID peptide by covalent or noncovalent association. Further thin-layer chromatography analysis of plant extracts indicated that the levels of IAA increased about 12 h after treatment and reached their peak at 24 h. This result suggests that IAA-Asp hydrolase may increase IAA levels and inhibit seed germination of mung bean plants and that the AID peptide is a new, rapid, and efficient experimental tool to study the in vivo activity of enzymes of interest in plant cells.  相似文献   

6.
Yang Y  Xu R  Ma CJ  Vlot AC  Klessig DF  Pichersky E 《Plant physiology》2008,147(3):1034-1045
The plant hormone auxin (indole-3-acetic acid [IAA]) is found both free and conjugated to a variety of carbohydrates, amino acids, and peptides. We have recently shown that IAA could be converted to its methyl ester (MeIAA) by the Arabidopsis (Arabidopsis thaliana) enzyme IAA carboxyl methyltransferase 1. However, the presence and function of MeIAA in vivo remains unclear. Recently, it has been shown that the tobacco (Nicotiana tabacum) protein SABP2 (salicylic acid binding protein 2) hydrolyzes methyl salicylate to salicylic acid. There are 20 homologs of SABP2 in the genome of Arabidopsis, which we have named AtMES (for methyl esterases). We tested 15 of the proteins encoded by these genes in biochemical assays with various substrates and identified several candidate MeIAA esterases that could hydrolyze MeIAA. MeIAA, like IAA, exerts inhibitory activity on the growth of wild-type roots when applied exogenously. However, the roots of Arabidopsis plants carrying T-DNA insertions in the putative MeIAA esterase gene AtMES17 (At3g10870) displayed significantly decreased sensitivity to MeIAA compared with wild-type roots while remaining as sensitive to free IAA as wild-type roots. Incubating seedlings in the presence of [(14)C]MeIAA for 30 min revealed that mes17 mutants hydrolyzed only 40% of the [(14)C]MeIAA taken up by plants, whereas wild-type plants hydrolyzed 100% of absorbed [(14)C]MeIAA. Roots of Arabidopsis plants overexpressing AtMES17 showed increased sensitivity to MeIAA but not to IAA. Additionally, mes17 plants have longer hypocotyls and display increased expression of the auxin-responsive DR5:beta-glucuronidase reporter gene, suggesting a perturbation in IAA homeostasis and/or transport. mes17-1/axr1-3 double mutant plants have the same phenotype as axr1-3, suggesting MES17 acts upstream of AXR1. The protein encoded by AtMES17 had a K(m) value of 13 microm and a K(cat) value of 0.18 s(-1) for MeIAA. AtMES17 was expressed at the highest levels in shoot apex, stem, and root of Arabidopsis. Our results demonstrate that MeIAA is an inactive form of IAA, and the manifestations of MeIAA in vivo activity are due to the action of free IAA that is generated from MeIAA upon hydrolysis by one or more plant esterases.  相似文献   

7.
Bialek K  Cohen JD 《Plant physiology》1992,100(4):2002-2007
We have shown that amide-linked IAA (indole-3-acetic acid) conjugates accumulated to high levels during maturation of bean seeds (K. Bialek and J.D. Cohen [1989] Plant Physiol 91: 775-779). In the present study, we were interested in the fate of these and other IAA conjugates during seed germination. The content of amide-linked conjugates of IAA in cotyledons declined dramatically during the first hours of imbibition. The rate of decline slowed markedly during the period of the resumption of axis growth. The level of amide-linked IAA conjugates in cotyledons remained relatively high after almost 1 week of germination. The decline of IAA conjugates in cotyledons was followed by a steady increase in the content of both free and amide-linked IAA in the embryonic axes. Amide-linked IAA conjugates were also present in the axes cultured on agar after the cotyledons were removed, which suggests that de novo production of these IAA conjugates occurs in the axis of germinating bean seedlings. A comparison of relative amounts of free and conjugated IAA in the axes of intact seedlings and axes cultured on agar showed lower levels of free IAA and higher levels of conjugated IAA in much slower growing isolated axes. These results suggest a more general role for IAA conjugates in the control of seedling growth than simply to serve as a seed storage form of auxin.  相似文献   

8.
Harpin HrpZ of plant-pathogenic bacterium Pseudomonas syringae elicits a hypersensitive response (HR) in some nonhost plants, but its function in the pathogenesis process is still obscure. HrpZ-interacting proteins were identified by screening a phage-display library of random peptides. HrpZ of the bean pathogen P. syringae pv. phaseolicola (HrpZPph) shows affinity to peptides with a consensus amino acid motif W(L)ARWLL(G/L). To localize the peptide-binding site, the hrpZPph gene was mutagenized with randomly placed 15-bp insertions, and the mutant proteins were screened for the peptide-binding ability. Mutations that inhibited peptide-binding localized to the central region of hrpZPph, which is separate from the previously determined HR-inducing region. Antiserum raised against one of the hrpZPph-binding peptides recognized small proteins in bean, tomato, parsley, and Arabidopsis thaliana but none in tobacco. On native protein blots, hrpZPph bound to a bean protein with similar pI as the protein recognized by the peptide antiserum. The result suggests a protein-protein interaction between the harpin and a host plant protein, possibly involved in the bacterial pathogenesis.  相似文献   

9.
The auxins 4-chloroindole-3-acetic acid (4-Cl-IAA) and indole-3-acetic acid (IAA) occur naturally in pea vegetative and fruit tissues (Pisum sativum L.). Previous work has shown that 4-Cl-IAA can substitute for the seeds in the stimulation of pea pericarp growth, whereas IAA is ineffective. Both auxins are found as free acids and as low-molecular-weight conjugates from organic solvent-soluble extracts from pea fruit. Here we present evidence for an additional conjugated auxin species that was not soluble in organic solvent and yielded 4-Cl-IAA and IAA after strong alkaline hydrolysis, suggestive of auxin attachment to pea seed and pericarp proteins. The solvent-insoluble conjugated 4-Cl-IAA in young pericarp was on average 15-fold greater than solvent-soluble 4-Cl-IAA. The solvent-insoluble conjugated IAA was approximately half the levels reported for the solvent-soluble IAA fraction. To identify putative 4-Cl-IAA-bound proteins, polyclonal antibodies were raised to 4-Cl-IAA linked to bovine serum albumin protein (BSA). Immunoblots probed with anti-4-Cl-IAA-BSA antiserum detected three to four unique bands (32–40 kDa) in primarily maternal tissues, and a different set of protein bands were detected in mainly embryonic tissues (ca. 65–74 kDa in mature seed). 4-Cl-IAA and IAA were also identified from protein fractions separated by polyacrylamide gel electrophoresis using GC-MS. These data show that the majority of 4-Cl-IAA, the growth-active auxin in young pea pericarp, and significant levels of IAA are linked to protein fractions. Auxin-proteins may function in regulation of free bioactive 4-Cl-IAA and IAA levels, and/or 4-Cl-IAA or IAA may be targeted to specific proteins post-translationally to modify protein function or stability.  相似文献   

10.
11.
12.
13.
14.
The role of regulated protein degradation in auxin response   总被引:11,自引:0,他引:11  
  相似文献   

15.
Reports from a number of laboratories describe the presence of a family of proteins (the major intrinsic protein family) in a variety of organisms. These proteins are postulated to form channels that function in metabolite transport. In plants, this family is represented by the product of NOD26, a nodulation gene in soybean that encodes a protein of the peribacteroid membrane, and tonoplast intrinsic protein (TIP), an abundant protein in the tonoplast of protein storage vacuoles of bean seeds (KD Johnson, H Höfte, MJ Chrispeels [1990] Plant Cell 2: 525-532). Other homologs that are induced by water stress in pea and in Arabidopsis thaliana and that are expressed in the roots of tobacco have been reported, but the location of the proteins they encode is not known. We now report the presence and derived amino acid sequences of two different TIP proteins in A. thaliana. α-TIP is a seed-specific protein that has 68% amino acid sequence identity with bean seed TIP; γ-TIP is expressed in the entire vegetative body of A. thaliana and has 58% amino acid identity with bean seed TIP. Both proteins are associated with the tonoplast. Comparisons of the derived amino acid sequences of the seven known plant proteins in the major intrinsic protein family show that genes with similar expression patterns (e.g. water stress-induced or seed specific) are more closely related to each other than the three A. thaliana homologs are related. We propose that the nonoverlapping gene expression patterns reported here, and the evolutionary relationships indicated by the phylogenetic tree, suggest a functional specialization of these proteins.  相似文献   

16.
Most indole-3-acetic acid (IAA) in higher plants is conjugated to amino acids, sugars, or peptides, and these conjugates are implicated in regulating the concentration of the free hormone. We identified iar1 as an Arabidopsis mutant that is resistant to the inhibitory effects of several IAA-amino acid conjugates but remains sensitive to free IAA. iar1 partially suppresses phenotypes of a mutant that overproduces IAA, suggesting that IAR1 participates in auxin metabolism or response. We used positional information to clone IAR1, which encodes a novel protein with seven predicted transmembrane domains and several His-rich regions. IAR1 has homologs in other multicellular organisms, including Drosophila, nematodes, and mammals; in addition, the mouse homolog KE4 can functionally substitute for IAR1 in vivo. IAR1 also structurally resembles and has detectable sequence similarity to a family of metal transporters. We discuss several possible roles for IAR1 in auxin homeostasis.  相似文献   

17.
The regulatory sequences of many genes encoding seed storage proteins have been used to drive seed-specific expression of a variety of proteins in transgenic plants. Because the levels at which these transgene-derived proteins accumulate are generally quite low, we investigated the utility of the arcelin-5 regulatory sequences in obtaining high seed-specific expression in transgenic plants. Arcelin-5 is an abundant seed protein found in some wild common bean (Phaseolus vulgaris L.) genotypes. Seeds of Arabidopsis and Tepary bean (Phaseolus acutifolius A. Gray) plants transformed with arcelin-5 gene constructs synthesized arcelin-5 to levels of 15% and 25% of the total protein content, respectively. To our knowledge, such high expression levels directed by a transgene have not been reported before. The transgenic plants also showed low plant-to-plant variation in arcelin expression. Complex transgene integration patterns, which often result in gene silencing effects, were not associated with reduced arcelin-5 expression. High transgene expression was the result of high mRNA steady-state levels and was restricted to seeds. This indicates that all requirements for high seed-specific expression are cis elements present in the cloned genomic arcelin-5 sequence and trans-acting factors that are available in Arabidopsis and Phaseolus spp., and thus probably in most dicotyledonous plants.  相似文献   

18.
The 2-[(18)F]fluoropropionic (2-[(18)F]FPA) acid is used as a prosthetic group for radiolabeling proteins and peptides for targeted imaging using positron emission tomography (PET). Radiolabeling of compounds with more than one acylable functional group can lead to complex mixtures of products; however, peptides can be labeled regioselectively on the solid phase. We investigated the use of a solid-phase approach for the preparation of 2-[(18)F]fluoropropionyl peptides. [(18)F]FPA was prepared and conjugated to the peptides attached to the solid phase support. The (18)F-labeled peptides were obtained in 175 min with decay corrected yields of 10% (related to [(18)F]fluoride) and with a purity of 76-99% prior HPLC purification. The suitability of various coupling reagents and solid supports were tested for radiolabeling of several peptides of various lengths.  相似文献   

19.
20.
Roles and activities of Aux/IAA proteins in Arabidopsis.   总被引:12,自引:0,他引:12  
Auxin induces various distinct developmental responses, partly by regulating gene expression. The Aux/IAA genes are a large gene family, many of which are induced by auxin. Work on Arabidopsis Aux/IAA genes has begun to reveal that they can regulate development and auxin-induced gene expression. Furthermore, auxin responses require Aux/IAA protein turnover. Finally, recent evidence suggests that Aux/IAA proteins can mediate light responses. Work in the near future should test whether Aux/IAA proteins are antennae that connect auxin and light signals to endogenous developmental responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号