首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Binding of activated forms of the proteinase inhibitor alpha2-macroglobulin (alpha2M*) to cell surface-associated GRP78 on 1-LN human prostate cancer cells causes their proliferation. We have now examined the interplay between Akt activation, regulation of apoptosis, the unfolded protein response, and activation of NF-kappaB in alpha2M*-induced proliferation of 1-LN cells. Exposure of cells to alpha2M* (50 pM) induced phosphatidylinositol 3-kinase-dependent activation of Akt by phosphorylation at Thr-308 and Ser-473 with a concomitant 60-80% increase in Akt-associated kinase activity. ERK1/2 and p38 MAPK were also activated, but there was only a marginal effect on JNK activation. Treatment of 1-LN cells with alpha2M* down-regulated apoptosis and promoted NF-kappaB activation as shown by increases of Bcl-2, p-Bad(Ser-136), p-FOXO1(Ser-253), p-GSK3beta(Ser-9), XIAP, NF-kappaB, cyclin D1, GADD45beta, p-ASK1(Ser-83), and TRAF2 in a time of incubation-dependent manner. alpha2M* treatment of 1-LN cells, however, showed no increase in the activation of caspase -3, -9, or -12. Under these conditions, we observed increased unfolded protein response signaling as evidenced by elevated levels of GRP78, IRE1alpha, XBP-1, ATF4, ATF6, p-PERK, p-eIF2alpha, and GADD34 and reduced levels of GADD153. Silencing of GRP78 gene expression by RNAi suppressed activation of Akt(Thr-308), Akt(Ser-473), and IkappaB kinase alpha kinase. The effects of alpha2M* on the NF-kappaB activation, antiapoptotic signaling, unfolded protein response signaling, and proapoptotic signaling were also reversed by this treatment. In conclusion, alpha2M* promotes cellular proliferation of 1-LN prostate cancer cells by activating MAPK and Akt-dependent signaling, down-regulating apoptotic signaling, and activating unfolded protein response signaling.  相似文献   

5.
6.
7.
The mammalian unfolded protein response (UPR) includes two major branches: one(s) specific to ER stress (Ire1/XBP-1 and ATF6-dependent), and one(s) shared by other cellular stresses (PERK/eIF-2alpha phosphorylation-dependent). Here, we demonstrate that the ER-localized protein Herp represents a second target, in addition to CHOP, that is dually regulated by both the shared and the ER stress-specific branches during UPR activation. For the first time, we are able to assess the contribution of each branch of the UPR in the induction of these targets. We demonstrate that activation of the shared branch of the UPR alone was sufficient to induce Herp and CHOP. ATF4 was not required during ER stress when both branches were used but did contribute significantly to their induction. Conversely, stresses that activated only the shared branch of the UPR were completely dependent on ATF4 for CHOP and Herp induction. Thus, the shared and the ER stress-specific branches of the UPR diverge to regulate two groups of targets, one that is ATF6 and Ire1/XBP-1-dependent, which includes BiP and XBP-1, and another that is eIF-2alpha kinase-dependent, which includes ATF4 and GADD34. The two branches also converge to maximally up-regulate targets like Herp and CHOP. Finally, our studies reveal that a PERK-dependent target other than ATF4 is contributing to the cross-talk between the two branches of the UPR that has previously been demonstrated.  相似文献   

8.
Naringenin improves lipoprotein profile and protects against cardiovascular disease. ATF6 is an endoplasmic reticulum (ER) stress sensor with the same activation processes with sterol regulator SREBPs. Clinical data revealed that ATF6 expression was associated with plasma cholesterol level. Here, we investigated whether naringenin was involved in the regulation of cholesterol efflux and tested the role of ER stress-ATF6 in the naringenin function. Results showed that naringenin increased cholesterol efflux to both apoA-I and HDL and gene expressions in ABCA1, ABCG1 and LXRα in RAW264.7 macrophages. Naringenin inhibited the cleaved ATF6 nuclear translocation and its target GRP78 and XBP-1 expressions. Naringenin-induced cholesterol efflux was modulated by treatment with ER stress inhibitor 4-phenylbutyric acid, inducer tunicamycin and ATF6 overexpression in RAW264.7 and/or THP-1 cells, which suggested the naringenin functions were mediated through inhibiting ER stress-ATF6 pathway. Next, we found high-fat diet (HFD) supplemented with naringenin increased by >1.2-fold in cholesterol efflux capacity in primary peritoneal macrophage in apoE−/− mice compared to only HFD-fed mice. The increase was significantly reduced by tunicamycin treatment. Naringenin decreased GRP78, XBP-1 and nuclear ATF6 levels in peritoneal macrophage and aorta and reduced atherosclerotic lesion at aortic root, but reversed by tunicamycin. These confirmed participation of ER stress-ATF6 in naringenin efficacy. Finally, we found naringenin promoted AKT phosphorylation; PI3K inhibitor LY294002 treatment increased nuclear ATF6 and reduced naringenin-enhanced ABCA1 expression and cholesterol efflux. We concluded naringenin as a regulator for cholesterol efflux, and the regulation was mediated by ATF6 branch of ER stress and PI3K/AKT pathway.  相似文献   

9.
The study was conducted to assess the role of eukaryotic initiation factor 2 (eIF2α) in progressive dopaminergic neuronal death employing various interventions (YM08, 4μ8C, AEBSF, salubrinal, ursolic acid) of endoplasmic reticulum (ER) stress signaling. The protein level of all the ER stress related signaling factors (GRP78, IRE1α, ATF6, eIF2α, ATF4, XBP-1, GADD153) were estimated after 3 and 7 day of experiment initiation. Findings with single administration of interventions showed that salubrinal exhibited significant protection against rotenone induced adverse alterations in comparison to other interventions. Therefore, further study was expanded with repeat dose of salubrinal. Rotenone administration in rat brain caused the significant biochemical alterations, dose dependent progressive neuronal apoptosis and altered neuronal morphology which was significantly attenuated with salubrinal treatment. In conclusion, findings showed that rotenone administration caused the dose dependent progressive neuronal death including cardinal role of eIF2α, suggesting the potential pharmacological utilization of salubrinal or salubrinal like molecules in therapeutics of Parkinson's diseases.  相似文献   

10.
11.
12.
13.

Background

Indole-3-carbinol and its metabolic products are considered promising chemopreventive and anticancer agents. Previously we have shown that the indole-3-carbinol cyclic tetrameric derivative CTet induces autophagy and inhibits cell proliferation via inhibition of Akt activity and overexpression of p21/CDKN1A and GADD45A, in both estrogen receptor-positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cell lines. In the present study, we further characterize the autophagic response and investigate the mechanism through which CTet regulates these events.

Methodology/Principal Findings

Analysis of gene expression microarray data and subsequent confirmation by quantitative real-time PCR, showed that CTet is able to induce up-regulation of key signaling molecules involved in endoplasmic reticulum (ER) stress response (e.g. DDIT3/CHOP, CHAC1, ATF3, HSPA5/BiP/GRP78, CEBPB, ASNS) and autophagy (e.g. MAP1LC3B), in both MCF-7 and MDA-MB-231 cell lines. Moreover, the monitoring of Xbp-1 splicing confirmed the activation of IRE1/Xbp-1 ER stress response branch after CTet treatment. The role of autophagic processes (known to be induced by ER stress) was investigated further through ATG5 gene silencing and pharmacological inhibition of AVOs formation. CTet was shown to induce an autophagy-related cell death. Moreover, CTet-treated cells stained with Hoechst/PI revealed the presence of necrotic processes without evidence of apoptosis.

Conclusions/Significance

The ER stress response was identified as the main upstream molecular mechanism through which CTet acts in both hormone-responsive and triple-negative breast cancer cells. Because of its important role in cancer development, ER stress is a potential target in cancer therapy. The abiltiy of CTet to induce ER stress response and subsequently activate a death program in tumor cells confirms this molecule as a promising anticancer agent.  相似文献   

14.
Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.  相似文献   

15.
16.
17.
Chiu SC  Chen SP  Huang SY  Wang MJ  Lin SZ  Harn HJ  Pang CY 《PloS one》2012,7(3):e33742

Background

N-butylidenephthalide (BP) exhibits antitumor effect in a variety of cancer cell lines. The objective of this study was to obtain additional insights into the mechanisms involved in BP induced cell death in human prostate cancer cells.

Methods/Principal Findings

Two human prostate cancer cell lines, PC-3 and LNCaP, were treated with BP, and subsequently evaluated for their viability and cell cycle profiles. BP caused cell cycle arrest and cell death in both cell lines. The G0/G1 phase arrest was correlated with increase levels of CDK inhibitors (p16, p21 and p27) and decrease of the checkpoint proteins. To determine the mechanisms of BP-induced growth arrest and cell death in prostate cancer cell lines, we performed a microarray study to identify alterations in gene expression induced by BP in the LNCaP cells. Several BP-induced genes, including the GADD153/CHOP, an endoplasmic reticulum stress (ER stress)-regulated gene, were identified. BP-induced ER stress was evidenced by increased expression of the downstream molecules GRP78/BiP, IRE1-α and GADD153/CHOP in both cell lines. Blockage of IRE1-α or GADD153/CHOP expression by siRNA significantly reduced BP-induced cell death in LNCaP cells. Furthermore, blockage of JNK1/2 signaling by JNK siRNA resulted in decreased expression of IRE1-α and GADD153/CHOP genes, implicating that BP-induced ER stress may be elicited via JNK1/2 signaling in prostate cancer cells. BP also suppressed LNCaP xenograft tumor growth in NOD-SCID mice. It caused 68% reduction in tumor volume after 18 days of treatment.

Conclusions

Our results suggest that BP can cause G0/G1 phase arrest in prostate cancer cells and its cytotoxicity is mediated by ER stress induction. Thus, BP may serve as an anticancer agent by inducing ER stress in prostate cancer.  相似文献   

18.
19.

Background

The endoplasmic reticulum (ER) is the cellular site for protein folding. ER stress occurs when protein folding capacity is exceeded. This stress induces a cyto-protective signaling cascades termed the unfolded protein response (UPR) aimed at restoring homeostasis. While acute ER stress is lethal, chronic sub-lethal ER stress causes cells to adapt by attenuation of UPR activation. Hepatitis C virus (HCV), a major human pathogen, was shown to cause ER stress, however it is unclear whether HCV induces chronic ER stress, and if so whether adaptation mechanisms are initiated. We wanted to characterize the kinetics of HCV-induced ER stress during infection and assess adaptation mechanisms and their significance.

Methods and Findings

The HuH7.5.1 cellular system and HCV-transgenic (HCV-Tg) mice were used to characterize HCV-induced ER stress/UPR pathway activation and adaptation. HCV induced a wave of acute ER stress peaking 2–5 days post-infection, which rapidly subsided thereafter. UPR pathways were activated including IRE1 and EIF2α phosphorylation, ATF6 cleavage and XBP-1 splicing. Downstream target genes including GADD34, ERdj4, p58ipk, ATF3 and ATF4 were upregulated. CHOP, a UPR regulated protein was activated and translocated to the nucleus. Remarkably, UPR activity did not return to baseline but remained elevated for up to 14 days post infection suggesting that chronic ER stress is induced. At this time, cells adapted to ER stress and were less responsive to further drug-induced ER stress. Similar results were obtained in HCV-Tg mice. Suppression of HCV by Interferon-α 2a treatment, restored UPR responsiveness to ER stress tolerant cells.

Conclusions

Our study shows, for the first time, that HCV induces adaptation to chronic ER stress which was reversed upon viral suppression. These finding represent a novel viral mechanism to manipulate cellular response pathways.  相似文献   

20.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号