首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The more foreleg femur and claw movements that a water stick insect, Ranatra linearis, performs during the 4-h period following a moult, the higher will be its subsequent strike efficiency. The amount of movement is influenced by external factors such as the presence of prey or light. The experiments reported here show that the absence of visual cues during the post-moult periods impairs subsequent performance, but not as much as the absence of both visual and mechanical cues. Perception of mechanical stimuli only during that period subsequently influences the accuracy of simple type strikes elicited when prey is near the forelegs; whereas perception of visual stimuli subsequently improves the accuracy of more complex predatory movements.  相似文献   

2.
Abstract. Attack by the ectoparasitoid Eulophus pennicornis Nees (Hymenoptera: Eulophidae) prevents larvae of Lacanobia oleracea L. (Lepidoptera: Noctuidae) from moulting. Prothoracic glands (PGs) excised from parasitized or artificially envenomated hosts show a reduced basal level of ecdysteroid release at a time when non-parasitized caterpillars produce an ecdysteroid surge (48 h post moult to 5th stadium = penultimate stadium in non-venomated hosts). By contrast, PGs from similarly parasitized or envenomated caterpillars release comparatively high levels of ecdysteroid at 120 h post-moult. Temporary inactivation of PGs cannot be attributed solely to a parasitoid-induced reduction in cell viability, and incubation in E. pennicornis venom in vitro does not exert any direct effect on either PG cell viability or ecdysteroid release. However, inactivated PGs are not stimulated by forskolin, which may indicate that the absence of the required pre-moult ecdysteroid surge in developmentally arrested L. oleracea is due to insensitivity to a prothoracicotropic hormone. Even though parasitized caterpillars never moult, reversed-phase HPLC separations and radioimmunoassay confirm that they produce active moulting hormone (20-hydroxyecdysone) at 120 h post-moult. These results suggest that E. pennicornis arrests host development through the indirect effects on their hosts' PGs. This effect is not achieved through the destruction of gland cells, but more likely reflects the interruption of an innate cycle in PG activity, such that they lose their ability to respond to a normal cue to produce an essential hormone peak at a crucial point in development.  相似文献   

3.
The Water Stick Insect,Ranatra dispar, is shown to be able to capute and hold a number of prey simultaneously. Capture of prey characteristically occurs in 3 distinct patterns (Type 1, 2 and 3), each characterized by a different number of prey caught. The time since las feeding by the predator has a significant effect on wether the predator will capture more than one prey. Once feeding starts, there is a critical period during which, if an encounter takes place the predator will attempt to capture either a second or third prey. The critical peroid is longer, the higher the motivation level of the predator. It is suggested that this prey-capture behaviour potentially increase the size of a meal as groups of prey move past the stationary prdator.  相似文献   

4.
1. The feeding rates, diet composition and diel periodicity in feeding activity among larvae of the damselfly Enallagma cyathigerum Charp., exposed to chemical, visual and mechanical stimuli from the predators Ranatra linearis (L.), Notonecta glauca L. and Rutilus rutilus (L.) were investigated.
2. In response to chemical cues produced by all the predator species, larvae reduced their rate of feeding significantly (especially on large, sedentary prey).
3. Small larvae reacted more strongly than large ones to the kairomone produced by N. glauca.
4. The fish kairomone induced a reduction in feeding activity during daylight hours only. This reaction was more intense than the reaction to non-chemical cues.
5. Observed predator-induced changes in diet composition, caused directly by reduced activity during feeding, are discussed as an antipredator behaviour of damselfly larvae.  相似文献   

5.
Experiments were conducted to investigate the sex-specific differences to feeding responses of the shore crab Carcinus maenas throughout the year. Results demonstrate that female shore crabs exhibit stronger feeding responses than males throughout the year with a significantly reduced feeding response in males during the summer months' reproductive season. We also studied the possible function(s) of the moulting hormone, 20-hydroxyecdysone (Crustecdysone) that has been described as a potential female-produced sex pheromone to initiate male reproductive behaviour in a number of crustaceans. We recently presented evidence that for shore crabs this is not the case and now show that the steroid is instead functioning as a sex-specific feeding deterrent protecting the moulting 'soft' female crabs. Whilst male shore crabs were deterred from prey (Mytilus edulis) and synthetic feeding stimulants glycine and taurine when these feeding stimulants were spiked with crustecdysone, intermoult female crabs were significantly less affected and rarely deterred from feeding. This sex specificity of the moulting hormone, in combination with the female sex pheromone, which has no anti-feeding properties, ensures that male crabs mate with soft-shelled, moulted females rather than engage in cannibalism, such as found frequently in cases when soft-shelled females are exposed to intermoult females.  相似文献   

6.
We measured daily energy expenditure (DEE) continuously for a whole year in a free ranging bird, the macaroni penguin Eudyptes chrysolophus . We combined these measurements with concurrently recorded foraging behaviour, and literature information on body mass and dietary factors to estimate prey consumption rates and foraging success. DEE was at a maximum during late chick-rearing but was equally high during all other active phases of the breeding season. DEE was approximately 4×resting metabolic rate, which accords with established theory and suggests a common 'energetic ceiling' throughout the summer period. However, whether this represents a maximum in physiological capacity, or a rate which optimises fitness is still unclear. Rates of prey consumption and foraging success followed different patterns from daily energy expenditure. Daily prey consumption was high as the penguins prepared for long fasts associated with moulting and incubation but relatively low during chick-rearing, when foraging areas were restricted and foraging success lower. It appears that the energy intake of macaroni penguins is subject to extrinisic or environmental constraints rather than to intrinsic physiological limits.  相似文献   

7.
Variations of associations between different behavioural patterns were analysed during post-embryonic development in the water stick insect,Ranatra linearis L. (Heteroptera: Nepidae). Behavioural patterns recorded were: quiescence, swimming, crawling, leg waving, body swaying, respiratory ascents breathing, respiratory descents, grooming and feeding activities (predatory attempts, foreleg movements, ingestion). A factorial analysis of correspondance stressed the contrast between the organization of larval behaviour and that of adult behaviour. No behavioural patterns were dropped from the repertoire during post-embryonic development ofRanatra linearis and no new patterns developed in adults outside the reproductive period. Larval behaviour was characterized by more frequent respiratory activities and grooming and adult behaviour was characterized by more frequent locomotory activities. At all larval stages grooming was associated with respiratory activities and crawling, but not with feeding activities.  相似文献   

8.
  • 1.1. Both the post-moult, rockhopper (Eudyptes crestatus) and magellanic penguins (Spheniscus magellanicus) had significantly lower plasma total protein, albumin, urate, iron and potassium and higher alkaline phosphatase activity than pre-moult birds. In addition creatinine, conjugated bilirubin and inorganic phosphate in the magellanics; globulin, urate, calcium, alanine and aspartate transaminases in the rockhoppers were significantly decreased.
  • 2.2. There were significant differences in plasma bicarbonate, inorganic phosphate, alkaline phosphatase and iron concentrations between non-moulting adult and post-moult gentoo penguin (Pygoscelis papua) chicks.
  • 3.3. Absence or scarcity of the preferred nutrient requirement during the period preceding moulting could threaten the survival of any of the species, particularly of those of narrow dietary speciality.
  相似文献   

9.
 Because cannibals are potentially both predator and prey, the presence of conspecifics and alternative prey may act together to influence the rate at which cannibals prey upon each other or emigrate from a habitat patch. Wolf spiders (Lycosidae) are cannibalistic-generalist predators that hunt for prey with a sit-and-wait strategy characterized by changes in foraging site. Little information is available on how both prey abundance and the presence of conspecifics influence patch quality for these cursorial, non-web-building spiders. To address this question, laboratory experiments were conducted with spiderlings and older juveniles of the lycosid genus Schizocosa. The presence of insect prey consistently reduced rates of spider emigration when spiders were housed either alone or in groups. Solitary juvenile Schizocosa that had been recently collected from the field exhibited a median giving-up time (GUT) of 10 h in the absence of prey (Collembola); providing Collembola increased the median GUT to 64 h. For solitary spiders, the absence of prey increased by about fourfold the rate of emigration during the first 24 h. In contrast, for spiders in patches with a high density of conspecifics, the absence of prey increased the 24-h emigration rate by only 1.6-fold. For successful cannibals in the no-prey patches, the presence of conspecifics improved patch quality by providing a source of food. Mortality by cannibalism was affected by both prey availability and openness of the patch to net emigration. In patches with no net emigration, the presence of prey reduced rates of cannibalism from 79% to 57%. Spiders in patches open to emigration but not immigration experienced a rate of cannibalism (16%) that was independent of prey availability. The results of these experiments indicate that for a cannibalistic forager such as the wolf spider Schizocosa, (1) the presence of conspecifics can improve average patch quality when prey are absent, and (2) cannibalism has the potential to be a significant mortality factor under natural field conditions because cannibalism persisted in prey patches that were open to emigration. Received: 12 April 1996 / Accepted: 14 August 1996  相似文献   

10.
David  Cundall 《Journal of Zoology》1995,237(3):353-376
Cylindrophis ruffus ingests prey using two distinct mechanisms. During initial phases of prey transport, lateral movements of the rear of the braincase combine with small unilateral movements of the toothed bones of each side; prey is usually constricted during this phase to permit the snake to push its head over the prey. Once transport has carried the leading part of the prey into the anterior oesophagus, Cylindrophis begins to use bilaterally synchronized movements of the jaw apparatus combined with low-amplitude, short wave-length flexions of the anterior vertebral column. Transport of prey is many times faster during the bilateral phase than during the unilateral phase.
Radiographic and cinematographic evidence indicates that the mandibular tips of Cylindrophis do not separate more than 1.5–2.0 times the resting distance between the dentary tips. Although this limits potential gape size, the intramandibular joint is highly mobile, allowing the mandibles to conform to a variety of prey shapes. Manipulations of anaesthetized and fresh, dead specimens revealed that the palatomaxillary arches are tightly attached to the ventral bones of the snout, movements of each arch being reflected in equivalent movements of the ipsilateral elements of the snout.
Cylindrophis represents a functional stage intermediate between most lizards with limited palatomaxillary kinesis and advanced snakes with considerable palatomaxillary mobility. Contrary to previous hypotheses, however, upper jaw liberation in Cylindrophis is due to liberation of the ventral snout, not to reduction of attachments to the braincase and snout. This suggests that the nose played a crucial role in the evolution of the feeding apparatus in alethinophidian snakes.  相似文献   

11.
Two primary defence behaviours, fore-leg extension to enhance crypsis and swimming to bottom and remaining motionless, of a predatory water bug,Ranatra dispar, are described along with their subsequent effect on foraging behaviour. It was hypothesised that hungry predators would respond less and for a shorter duration compared with recently fed individuals when exposed to a model threat stimulus, thereby tending to take a higher risk of predation during feeding than satiated animals. A greater proportion of animals responded overall with the leg extension response compared with the swimming response, although the mean duration of the former was significantly shorter than the latter response. A significantly higher proportion of nonfasted predators responded, and for a longer duration than fasted individuals. The type of model used significantly effected the proportion of animals that responded with leg extensions but not on its duration. In contrast, both number of animals and the duration of the swim/motionless behaviour were significantly effected by stimulus type. The subsequent effect of these 2 behavioural responses on feeding behaviour was examined and showed that although about the same number of predators removed prey from their mouthparts during both responses, significantly more prey were dropped, and therefore lost, during swimming. The results clearly indicate the significant effects that defensive behaviours have on time budgets in foraging behaviour.  相似文献   

12.
Due to increasing human encroachment into the remaining habitat of many large carnivore species, there is an immediate need to understand the ecological and anthropogenic factors influencing carnivore space use decisions. In particular, knowledge of changes in space use in response to disturbance, and the costs associated with these changes, will be critical in guiding conservation efforts. To investigate the ecological factors influencing carnivore space use, we intensively radiotracked members of two large social groups (clans) of spotted hyaenas Crocuta crocuta in the Masai Mara National Reserve, Kenya. In addition, we studied the influence of livestock grazing by comparing space use between two study clans that differed dramatically in exposure to grazing. Logistic regression modeling indicated that space use in the absence of livestock was most influenced by the location of the clan's communal den. However, hyaenas were also found to select shrubland, areas of high prey density, and proximity to seasonal streams. Movements of hyaenas exposed to livestock grazing were most influenced by vegetation type, with a strong avoidance of open grass plains. Den location and prey density had less influence on space use decisions in the disturbed than the undisturbed clan. Livestock distribution did not directly influence hyaena movements either during daytime, when livestock were present, or at night. We suggest that direct livestock avoidance was unnecessary due to the observed increased use of vegetative cover by hyaenas exposed to grazing livestock. The greater distances from the den, and from areas of high prey density at which hyaenas were found in disturbed than undisturbed areas indicates potential energetic costs incurred by disturbed hyaenas. Our results therefore suggest that reduced vegetative cover, as is often found outside protected areas, may result in more dramatic modifications of hyaena movements in the presence of livestock.  相似文献   

13.
As the Antarctic Circumpolar Current crosses the South-West Indian Ocean Ridge, it creates an extensive eddy field characterised by high sea level anomaly variability. We investigated the diving behaviour of female southern elephant seals from Marion Island during their post-moult migrations in relation to this eddy field in order to determine its role in the animals’ at-sea dispersal. Most seals dived within the region significantly more often than predicted by chance, and these dives were generally shallower and shorter than dives outside the eddy field. Mixed effects models estimated reductions of 44.33 ± 3.00 m (maximum depth) and 6.37 ± 0.10 min (dive duration) as a result of diving within the region, along with low between-seal variability (maximum depth: 5.5 % and dive duration: 8.4 %). U-shaped dives increased in frequency inside the eddy field, whereas W-shaped dives with multiple vertical movements decreased. Results suggest that Marion Island’s adult female elephant seals’ dives are characterised by lowered cost-of-transport when they encounter the eddy field during the start and end of their post-moult migrations. This might result from changes in buoyancy associated with varying body condition upon leaving and returning to the island. Our results do not suggest that the eddy field is a vital foraging ground for Marion Island’s southern elephant seals. However, because seals preferentially travel through this area and likely forage opportunistically while minimising transport costs, we hypothesise that climate-mediated changes in the nature or position of this region may alter the seals’ at-sea dispersal patterns.  相似文献   

14.
Barn owls exhibit a rich repertoire of head movements before taking off for prey capture. These movements occur mainly at light levels that allow for the visual detection of prey. To investigate these movements and their functional relevance, we filmed the pre-attack behavior of barn owls. Off-line image analysis enabled reconstruction of all six degrees of freedom of head movements. Three categories of head movements were observed: fixations, head translations and head rotations. The observed rotations contained a translational component. Head rotations did not follow Listing’s law, but could be well described by a second-order surface, which indicated that they are in close agreement with Donder’s law. Head translations did not contain any significant rotational components. Translations were further segmented into straight-line and curved paths. Translations along an axis perpendicular to the line of sight were similar to peering movements observed in other animals. We suggest that these basic motion elements (fixations, head rotations, translations along a straight line, and translation along a curved trajectory) may be combined to form longer and more complex behavior. We speculate that these head movements mainly underlie estimation of distance during prey capture.  相似文献   

15.
The present study was aimed at testing a novel idea, that rather than maximizing their distance from a predator during close-distance encounters, prey species are better off moving directly or diagonally toward the predator in order to increase the relative speed and confine the attack to a single available clashing point. We used two tamed barn owls Tyto alba to measure the rate of attack success in relation to the direction of prey movement. A dead mouse or chick was used to simulate the prey, pulled to various directions by means of a transparent string during the owl's attack. Both owls showed a high success rate in catching stationary compared with moving food items (90% and 21%, respectively). Success was higher when the prey moved directly away, rather than towards the owls (50% and 18%, respectively). Strikingly, these owls had 0% success in catching food items that were pulled sideways. This failure to catch prey that move sideways may reflect constraints in postural head movements in aerial raptors that cannot move the eyes but rather move the entire head in tracking prey. So far there is no evidence that defensive behavior in terrestrial prey species takes advantage of the above escape directions to lower rates of predator success. However, birds seem to adjust their defensive tactics in the vertical domain by taking-off at a steep angle, thus moving diagonally toward the direction of an approaching aerial predator. These preliminary findings warrant further studies in barn owls and other predators, in both field and laboratory settings, to uncover fine predator head movements during hunting, the corresponding defensive behavior of the prey, and the adaptive significance of these behaviors.  相似文献   

16.
Defended prey frequently advertise to potential predators usingmultimodal warning displays. Signaling through more than onesensory pathway may enhance the rate of avoidance learning andthe memorability of these learned avoidances. If this is so,then mimetic insects would gain more protection from mimickinga multimodal rather than a monomodal model. Day-old domesticchicks (Gallus gallus domesticus) were used to examine whethera common insect warning odor (pyrazine) enhanced learning andmemorability of yellow prey, a common warning color. Pyrazineincreased the rate at which the chicks learned to avoid unpalatableyellow prey, and how well this learned avoidance was rememberedafter a 96-h interval. After 96 h, mimics of the multimodalprey were avoided, whereas mimics of the monomodal prey werenot. In the absence of pyrazine, chicks generalized their learnedavoidance of the unpalatable yellow prey to palatable greenprey; however, the presence of pyrazine reduced this color generalization.These results suggest that much is to be gained from signalingmultimodally, for both models and mimetic prey species. Thepresence of multimodal prey in the habitat may also advantagethe predators as it allows it them to distinguish more easilybetween palatable and unpalatable prey.  相似文献   

17.
Most previous studies of snake feeding mechanisms have focused on the functional morphology of the highly specialized ophidian jaw apparatus. Although some of these studies have included observations of post-cranial movements during feeding, the functional roles of these movements have remained poorly understood. In this study, we used x-ray videography to examine post-cranial prey transport mechanisms in a colubrid snake, Pituophis melanoleucus lodingi. We found that prey transport in this species progresses through four distinct phases, three of which are characterized by either undulatory or concertina-like movements of the anterior portion of the trunk. In the first phase of transport (the oral phase), unilateral movements of the jaws are used to pull the head forward around the prey. In the second phase (the orocervical phase), unilateral jaw movements continue, but are augmented by concertina-like movements of the anterior portion of the trunk. In the third phase (the cervical phase), prey transport occurs exclusively through concertina-like movements of the neck. Finally, in the fourth phase (the thoracic phase), prey is transported to the stomach via undulatory movements of the trunk. Our observations of feeding behavior in a phylogenetically diverse sample of fourteen other snake species demonstrate that similar post-cranial transport mechanisms are used by a wide variety of alethinophidian snakes that feed on large, bulky prey.  相似文献   

18.
Before moulting, terrestrial isopods resorb calcium carbonate (CaCO3) from the posterior cuticle and store it in sternal deposits. These consist mainly of amorphous calcium carbonate (ACC) spherules that develop within the ecdysial space between the anterior sternal epithelium and the old cuticle. Ions that occur in the moulting fluid, including those required for mineral deposition, are transported from the hemolymph into the ecdysial space by the anterior sternal epithelial cells. The cationic composition of the moulting fluid probably affects mineral deposition and may provide information on the ion-transport activity of the sternal epithelial cells. This study presents the concentrations of inorganic cations within the moulting fluid of the anterior sternites during the late premoult and intramoult stages. The most abundant cation is Na+ followed by Mg2+, Ca2+ and K+. The concentrations of these ions do not change significantly between the stages whereas the mean pH changed from 8.2 to 6.9 units between mineral deposition in late premoult, and resorption in intramoult, respectively. Measurements of the transepithelial potential show that there is little driving force for passive movements of calcium across the anterior sternal epithelium. The results suggest a possible role of magnesium ions in ACC formation, and a contribution of pH changes to CaCO3 precipitation and dissolution.  相似文献   

19.
Functional response curves were constructed for adult Ranatra dispar feeding on four different densities of notonectid prey at 15, 20, 25 and 30°C. Values for the attack-rate and handling time were estimated from Roger's random predator equation. The most generally applicable response was the type II, with the mean number of prey eaten increasing with increase in temperature. The attack-rate was linearly related to temperature while handling time decreased exponentially with increase in temperature, although values changed very little between 20 and 30°C. It is suggested that changes in metabolic activity and related ‘hunger’ effects on various components of predatory behaviour account for the observed number of prey eaten up to 25°C, however, an increase in the level of prey activity at 30°C may influence the observed number of prey caught (and eaten) at this higher temperature.  相似文献   

20.
The feeding niche ofColostethus stepheni changes during ontogeny. Small individuals eat small arthropods, principally mites and collembolans, and larger frogs eat bigger prey of other types. The shift in prey types is not a passive effect of selection for bigger prey. There is a strong relationship between electivity for prey types and frog size, independent of electivity for prey size. Four indices of general activity during foraging (number of movements, velocity, total area utilized and time spent moving), which are associated with electivity for prey types in adult frogs and lizards, did not predict the ontogenetic change in the diet ofC. stepheni. Apparently, the behavioral changes that cause the ontogenetic change inC. stepheni are more subtle than shifts in general activity during foraging. Studies of niche partitioning in communities of anurans that do not take into consideration ontogenetic changes in diet and seasonal changes in the size structures of populations present a partial and possibly erroneous picture of the potential interactions among species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号