首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza A virus pneumonia is characterized by severe lung injury and high mortality. Early infection elicits a strong recruitment of monocytes from the peripheral blood across the endo-/epithelial barrier into the alveolar air space. However, it is currently unclear which of the infected resident lung cell populations, alveolar epithelial cells or alveolar macrophages, elicit monocyte recruitment during influenza A virus infection. In the current study, we investigated whether influenza A virus infection of primary alveolar epithelial cells and resident alveolar macrophages would elicit a basal-to-apical monocyte transepithelial migration in vitro. We found that infection of alveolar epithelial cells with the mouse-adapted influenza A virus strain PR/8 strongly induced the release of monocyte chemoattractants CCL2 and CCL5 followed by a strong monocyte transepithelial migration, and this monocytic response was strictly dependent on monocyte CCR2 but not CCR5 chemokine receptor expression. Analysis of the adhesion molecule pathways demonstrated a role of ICAM-1, VCAM-1, integrin-associated protein (CD47), and junctional adhesion molecule-c on the epithelial cell surface interacting with monocyte beta(1) and beta(2) integrins and integrin-associated protein in the monocyte transmigration process. Importantly, addition of influenza A virus-infected alveolar macrophages further enhanced monocyte transmigration across virus-infected epithelium in a TNF-alpha-dependent manner. Collectively, the data show an active role for virus-infected alveolar epithelium in the regulation of CCL2/CCR2-dependent monocyte transepithelial migration during influenza infection that is essentially dependent on both classical beta(1) and beta(2) integrins but also junctional adhesion molecule pathways.  相似文献   

2.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

3.
Neutrophil transepithelial migration is a central component of many inflammatory diseases of the gastrointestinal, respiratory and urinary tracts, and correlates with disease symptoms. In vitro modeling with polarized intestinal epithelial monolayers has shown that neutrophil transepithelial migration can influence crucial epithelial functions, ranging from barrier maintenance to electrolyte secretion. Studies have also demonstrated a dynamic involvement of the epithelium in modulating neutrophil transepithelial migration. Characterization of the molecular interactions between neutrophils and epithelial cells has revealed that transepithelial migration is dependent on the neutrophil β2 integrin CD11b/CD18, and does not appear to involve adhesive interactions with the selectins or intercellular adhesion molecule-1. Recent studies have implicated another transmembrane glycoprotein, CD47, as a crucial component of the transepithelial migration response. While the precise function of CD47 is not known, current evidence suggests that CD47-dependent events occur after CD11b/CD18-mediated neutrophil adhesion to the epithelium. This review will highlight key features of the current understanding of the molecular events important in neutrophil migration across epithelial surfaces.  相似文献   

4.
IL-1 beta promotes adhesiveness in human umbilical vein endothelial cells (HuVEC) for eosinophils through expression of adhesion molecules including intercellular adhesion molecules-1 (ICAM-1), E-selectin, and vascular cell adhesion molecule-1 (VCAM-1). Using an in vitro endothelial monolayer system, we examined whether IL-1 beta or TNF-alpha can promote eosinophil transendothelial migration. We also evaluated the contributions of ICAM-1, E-selectin, VCAM-1, leukocyte adhesion complex (CD11/18), and very late Ag-4 (CD11b/18) (VLA-4) in this process using blocking mAb, and determined the changes in expression of CD11b and L-selectin on eosinophils that had undergone transmigration. IL-1 beta and TNF-alpha treatment of HuVEC (4 h, 5 ng/ml) induced significant transendothelial migration of eosinophils (a 4.1 +/- 0.4-fold (IL-1 beta) and 2.0 +/- 0.9-fold (TNF-alpha) increase from the spontaneous value of 3.2 +/- 0.3%). Increased CD11b expression and shedding of L-selectin were observed on eosinophils following IL-1 beta-induced eosinophil transendothelial migration. Studies with mAb revealed that blockade of either ICAM-1 or CD11/18 inhibited transmigration, while antibodies against VCAM-1 and VLA-4 had no inhibitory effect. Among antibodies which block beta 2 integrins, anti-CD18 mAb had the best inhibitory effect (88% inhibition). The combined inhibitory effect of anti-CD11a mAb and anti-CD11b mAb was roughly equal to that of anti-CD18, although anti-CD11a (31% inhibition) and anti-CD11b (52% inhibition) were less effective individually. Anti-ICAM-1 by itself inhibited IL-1 beta-induced eosinophil transendothelial migration (24% inhibition) whereas neither anti-E-selectin nor anti-VCAM-1 were effective inhibitors. Interestingly, the combination of anti-E-selectin and anti-VCAM-1 with anti-ICAM-1 inhibited IL-1 beta-induced eosinophil transendothelial migration significantly better (53% inhibition) than anti-ICAM-1 alone. These results suggest that although the initial attachment of eosinophils to IL-1 beta-activated endothelial cells involves VCAM-1, E-selectin, and ICAM-1, the subsequent transendothelial migration process relies heavily on ICAM-1 and CD11/18. Finally, the changes that eosinophils have been observed to undergo during infiltration in vivo, namely increased expression of CD11/18 and shedding of L-selectin, appear to take place as a direct result of the interaction between eosinophils and endothelial cells.  相似文献   

5.
Cytokines produced by activated macrophages and Th2 cells within the lung play a key role in asthma-associated airway inflammation. Additionally, recent studies suggest that the molecule CD40 modulates lung immune responses. Because airway epithelial cells can act as immune effector cells through the expression of inflammatory mediators, the epithelium is now considered important in the generation of asthma-associated inflammation. Therefore, the goal of the present study was to examine the effects of proinflammatory and Th2-derived cytokines on the function of CD40 in airway epithelia. The results show that airway epithelial cells express CD40 and that engagement of epithelial CD40 induces a significant increase in expression of the chemokines RANTES, monocyte chemoattractant protein (MCP-1), and IL-8 and the adhesion molecule ICAM-1. Cross-linking epithelial CD40 had no effect on expression of the adhesion molecule VCAM-1. The proinflammatory cytokines TNF-alpha and IL-1beta and the Th2-derived cytokines IL-4 and IL-13 modulated the positive effects of CD40 engagement on inflammatory mediator expression in airway epithelial cells. Importantly, CD40 ligation enhanced the sensitivity of airway epithelial cells to the effects of TNF-alpha and/or IL-1beta on expression of RANTES, MCP-1, IL-8, and VCAM-1. In contrast, neither IL-4 nor IL-13 modified the effects of CD40 engagement on the expression of RANTES, MCP-1, IL-8, or VCAM-1; however, both IL-4 and IL-13 attenuated the effects of CD40 cross-linking on ICAM-1 expression. Together, these findings suggest that interactions between CD40-responsive airway epithelial cells and CD40 ligand+ leukocytes, such as activated T cells, eosinophils, and mast cells, modulate asthma-associated airway inflammation.  相似文献   

6.
The trafficking of leukocytes through tissues is supported by an interaction between the beta 2 (CD18) integrins CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) and their ligand ICAM-1. The most recently identified and fourth member of the beta 2 integrins, alpha D beta 2, selectively binds ICAM-3 and does not appear to bind ICAM-1. We have reported recently that alpha D beta 2 can support eosinophil adhesion to VCAM-1. Here we demonstrate that expression of alpha D beta 2 in a lymphoid cell that does not express alpha 4 integrins confers efficient binding to VCAM-1. In addition, a soluble form of alpha D beta 2 binds VCAM-1 with greater efficiency relative to ICAM-3. The I domain of alpha D contains a binding site for VCAM-1 since recombinant alpha D I domain binds specifically to VCAM-1. In addition, alpha D mAb that block cellular binding to VCAM-1 bind the alpha D I domain. Using VCAM-1 mutants we have determined that the binding site on VCAM-1 for alpha D beta 2 overlaps with that of alpha 4++ integrins. Substitution of VCAM-1 aspartate at position 40, D40, within the conserved integrin binding site, diminishes binding to alpha D beta 2 and abrogates binding to the alpha D I domain. The corresponding integrin binding site residue in ICAM-3 is also essential to alpha D beta 2 binding. Finally, we demonstrate that alpha D beta 2 can support lymphoid cell adhesion to VCAM-1 under flow conditions at levels equivalent to those mediated by alpha 4 beta 1. These results indicate that VCAM-1 can bind to an I domain and that the binding of alpha D beta 2 to VCAM-1 may contribute to the trafficking of a subpopulation of leukocytes that express alpha D beta 2.  相似文献   

7.
Neonatal mice have a delayed CD4-mediated inflammatory response to Pneumocystis carinii (PC) infection in the lungs that corresponds to a delayed TNF-alpha response and a delayed clearance of the organisms compared with adult mice. Since TNF-alpha is known to drive the up-regulation of adhesion molecules, we examined the expression and function of adhesion molecules in the lungs of neonatal mice. The expression of both ICAM-1 and VCAM-1 was significantly lower in the lungs of PC-infected neonatal mice compared with adults. Additionally, migration of neonatal T cells across endothelial cells expressing VCAM-1 and monocyte chemotactic protein-1 was aberrant compared with that in adult T cells, although alpha(4)beta(1) integrin-mediated adhesion of neonatal lymphocytes was comparable to that of adult lymphocytes. Treatment of neonatal mice with exogenous TNF-alpha resulted in increased expression of ICAM-1 and VCAM-1 as well as increased expression of chemokines, resulting in infiltration of CD4(+) cells into the lungs. Treatment with exogenous TNF-alpha resulted in a trend (although not statistically significant) toward a reduction of PC organisms from the lungs. These data indicate that neonatal lung endothelial cells do not up-regulate ICAM-1 and VCAM-1 in response to PC infection, probably due to depressed TNF-alpha production. Additionally, neonatal T cells are defective in the ability to migrate across endothelial cells.  相似文献   

8.
We examined the role of cytosolic phospholipase A2 (cPLA2) during human eosinophil adherence to ICAM-1- or VCAM-1-coated plates. IL-5-stimulated eosinophils adhered to ICAM-1 through the beta 2 integrin CD11b/CD18, while nonstimulated eosinophils did not. By contrast, nonstimulated eosinophils adhered to VCAM-1 through the beta 1-integrin VLA-4/CD29. Both IL-5-induced adhesion to ICAM-1 and spontaneous adhesion to VCAM-1 corresponded temporally to cPLA2 phosphorylation, which accompanied enhanced catalytic activity of cPLA2. The structurally unrelated cPLA2 inhibitors, arachidonyl trifluoromethylketone and surfactin, significantly inhibited eosinophil adhesion to ICAM-1 and VCAM-1 in a concentration-dependent manner. Inhibition of secretory PLA2, 5-lipoxygenase, or cyclooxygenase did not affect eosinophil adhesion. Addition of arachidonic acid to eosinophils after cPLA2 inhibition with arachidonyl trifluoromethylketone or surfactin did not reverse the blockade of adhesion to ICAM-1 or VCAM-1. However, CV-6209, a receptor-specific antagonist of platelet-activating factor, inhibited all integrin-mediated adhesion. The activated conformation of CD11b as identified by the mAb, CBRM1/5, as well as quantitative surface CD11b expression were up-regulated after IL-5 stimulation. However, cPLA2 inhibition neither prevented CBRM1/5 expression nor blocked surface Mac-1 up-regulation caused by IL-5. Our data suggest that cPLA2 activation and its catalytic product platelet-activating factor play an essential role in regulating beta 1 and beta 2 integrin-dependent adhesion of eosinophils. This blockade occurs even in the presence of up-regulated eosinophil surface integrin.  相似文献   

9.
《The Journal of cell biology》1996,134(4):1063-1073
Leukocyte emigration possibly requires dynamic regulation of integrin adhesiveness for endothelial and extracellular matrix ligands. Adhesion assays on purified vascular cell adhension molecule (VCAM)-1, fibronectin, and fibronectin fragments revealed distinct kinetic patterns for the regulation of very late antigen (VLA)-4 (alpha 4 beta 1) and VLA-5 (alpha 5 beta 1) avidity by the CC chemokines monocyte inflammatory protein (MIP)-1 alpha, RANTES (regulated on activation, normal T expressed and secreted), or monocyte chemoattractant protein (MCP)-1 in monocytes. CC chemokines induced early activation and subsequent deactivation of VLA-4, whereas upregulation of VLA-5 avidity occurred later and persisted. Controlled detachment assays in shear flow suggested that adhesive strength of VLA-4 for VCAM-1 or the 40-kD fragment of fibronectin (FN40) is more rapidly increased and subsequently reduced by MCP-1 than by MIP-1 alpha, and confirmed late and sustained activation of the adhesive strength of VLA-5 for the 120- kD fragment of fibronectin (FN120). Mn2+ or the stimulating beta 1 mAb TS2/16 strongly and stably enhanced monocyte binding to VCAM-1 or fibronectin, and locked beta 1 integrins in a high avidity state, which was not further modulated by CC chemokines. Mn2+ and mAb TS2/16 inhibited CC chemokine-induced transendothelial migration, particularly chemotaxis across stimulated endothelium that involved VLA-4 and VCAM- 1. VLA-4 on Jurkat cells is of constitutively high avidity and interfered with migration across barriers expressing VCAM-1. Low but not high site densities of VCAM-1 or FN40 promoted, while FN120 impaired, beta 1 integrin-dependent monocyte chemotaxis to MCP-1 across filters coated with these substrates. Thus, we show that CC chemokines can differentially and selectively regulate avidity of integrins sharing common beta subunits. Transient activation and deactivation of VLA-4 may serve to facilitate transendothelial diapedesis, whereas late and prolonged activation of VLA-5 may mediate subsequent interactions with the basement membrane and extracellular matrix.  相似文献   

10.
11.
Transepithelial migration of neutrophils (PMN) is a defining characteristic of active inflammatory states of mucosal surfaces. The process of PMN transepithelial migration, while dependent on the neutrophil beta 2 integrin CD11b/CD18, remains poorly understood. In these studies, we define a monoclonal antibody, C5/D5, raised against epithelial membrane preparations, which markedly inhibits PMN migration across polarized monolayers of the human intestinal epithelial cell line T84 in a bidirectional fashion. In T84 cells, the antigen defined by C5/D5 is upregulated by epithelial exposure to IFN-gamma, and represents a membrane glycoprotein of approximately 60 kD that is expressed on the basolateral membrane. While transepithelial migration of PMN was markedly inhibited by either C5/D5 IgG or C5/D5 Fab fragments, the antibody failed to inhibit both adhesion of PMN to T84 monolayers and adhesion of isolated T84 cells to the purified PMN integrin, CD11b/CD18. Thus, epithelial-PMN interactions blocked by C5/D5 appear to be downstream from initial CD11b/CD18-mediated adhesion of PMN to epithelial cells. Purification, microsequence analysis, and cross-blotting experiments indicate that the C5/D5 antigen represents CD47, a previously cloned integral membrane glycoprotein with homology to the immunoglobulin superfamily. Expression of the CD47 epitope was confirmed on PMN and was also localized to the basolateral membrane of normal human colonic epithelial cells. While C5/D5 IgG inhibited PMN migration even in the absence of epithelial, preincubation of T84 monolayers with C5/D5 IgG followed by antibody washout also resulted in inhibition of transmigration. These results suggest the presence of both neutrophil and epithelial components to CD47-mediated transepithelial migration. Thus, CD47 represents a potential new therapeutic target for downregulating active inflammatory disease of mucosal surfaces.  相似文献   

12.
Neutrophil, or polymorphonuclear leukocyte (PMN), migration across intestinal epithelial barriers, such as occurs in many disease states, appears to result in modifications of epithelial barrier and ion transport functions (Nash, S., J. Stafford, and J. L. Madara. 1987. J. Clin. Invest. 80:1104-1113; Madara, J. L., C. A. Parkos, S. P. Colgan, R. J. MacLeod, S. Nash, J. B. Matthews, C. Delp, and W. I. Lencer. 1992. J. Clin. Invest. 89:1938-1944). Here we investigate the effects of epithelial exposure to IFN-gamma on PMN migration across cultured monolayers of the human intestinal epithelial cell line T84. Transepithelial migration of PMN was initially assessed in the apical- to-basolateral direction, since previous studies indicate general qualitative similarities between PMN migration in the apical-to- basolateral and in the basolateral-to-apical directions. In the apical- to-basolateral direction, epithelial exposure to IFN-gamma markedly upregulated transepithelial migration of PMN in a dose- and time- dependent fashion as measured by both electrical and myeloperoxidase assays. This IFN-gamma-elicited effect on transmigration was specifically due to a IFN-gamma effect on epithelial cells and was not secondary to IFN-gamma effects on epithelial tight junction permeability. Moreover, this IFN-gamma effect was dependent on epithelial protein synthesis, and involved a pathway in which CD11b/18, but not ICAM-1 or CD11a/18, appeared to play a crucial role in PMN- epithelial adhesion. IFN-gamma also substantially modified PMN transepithelial migration in the natural, basolateral-to-apical direction. The IFN-gamma effect on naturally directed transmigration was also specifically due to an IFN-gamma effect on epithelial cells, showed comparable time and dose dependency to that of oppositely directed migration, was CD11b/18 dependent, and required epithelial protein synthesis. Additionally, however, important qualitative differences existed in how IFN-gamma affected transmigration in the two directions. In contrast to apical-to-basolateral directed migration, IFN-gamma markedly downregulated transepithelial migration of PMN in the natural direction. This downregulation of PMN migration in the natural direction, however, was not due to failure of PMN to move across filters and into monolayers. Indeed, IFN-gamma exposure to epithelia increased the number of PMN which had moved into the basolateral space of the epithelium in naturally directed transmigration. These results represent the first detailed report of influences on PMN transepithelial migration by a cytokine, define conditions under which a qualitative difference in PMN transepithelial migration exists, and suggest that migration of PMN across epithelia in the natural direction may involve multiple steps which can be differentially regulated by cytokines.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Our objective was to study the influence of HIV infection of polymorphonuclear leukocytes (PMN) on transepithelial migration. To date, reports of functional PMN chemotaxis in AIDS are contradictory. This is the first attempt to assess this function via an in vitro model allowing transmigration of neutrophils through an intestinal epithelial barrier. PMN were isolated from 45 HIV-infected patients and 45 healthy volunteers. PMN transmigration across T84 epithelial cells was initiated by applying either various concentrations of formyl-met-leu-phe peptide (f-MLP) or interleukin-8 and assayed by quantification of myeloperoxidase activity. CD11b, CD18, and CD47 expression on PMN was compared before and after transepithelial migration by flow cytometry analysis. CD11b expression was studied by electron microscopy. Apoptosis of transmigrated HIV PMN and control PMN was investigated by morphology and DNA fragmentation characterization. Compared to control PMN, HIV PMN exhibited a decrease in transepithelial migration that directly correlated with CD4+ counts. Basal and transepithelial migration-mediated expression of CD11b, CD18, and CD47 were unmodified in HIV PMN compared to control PMN. Electron microscopy labeling confirmed no difference in CD11b expression on HIV and control PMN. The index of apoptosis in transmigrated HIV PMN and control PMN was identical. These data provide evidence of a defect in the f-MLP-induced chemotaxis of PMN from HIV-infected patients across an intestinal epithelial barrier. This defective migration is not due to a quantitative modification of CD11b, CD18 and CD47 on HIV PMN suggesting a more subtle alteration. The impairment in the transmigration function may contribute in vivo to an increased susceptibility to intestinal bacterial infection in HIV-infected patients.  相似文献   

14.
Monocytes play a critical role in defending the host against foreign organisms and in regulating the behavior of other cells. Monocytes circulate as nonadherent cells in the blood and migrate as adherent cells through tissues. Adhesion molecules mediate not only cell adhesion, but also migration, phagocytosis, and many other adhesion-dependent functions. Monocyte chemoattractant protein-1 (MCP-1) is thought to be responsible for monocyte recruitment in acute inflammatory conditions and may be an important mediator in chronic inflammation. In this study, immunofluorescence flow cytometry was used to determine whether MCP-1 can regulate the cell surface expression of adhesion molecules, particularly beta-2 and alpha-4 integrins and the leukocyte adhesion molecule-1. We found that MCP-1 induced expression of CD11c (p150,95 alpha-subunit) and CD11b (Mac-1 alpha-subunit), and caused little or no change of CD11a (lymphocyte function-associated Ag-1 alpha-subunit), very late activation Ag-4, or leukocyte adhesion molecule-1. We demonstrated that antibodies to beta-2 and alpha-4 integrins inhibited MCP-1-induced monocyte chemotaxis. We also showed that MCP-1 is capable of inducing IL-1 and IL-6, but not TNF production of monocytes. These results indicate that MCP-1 is not only a chemoattractant but also a novel cytokine with the capacity to regulate several parameters of monocyte function.  相似文献   

15.
Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The keratinocyte growth factor (KGF) favorably influences alveolar maintenance and repair and possesses anti-inflammatory properties. We aimed to determine whether exogenous KGF prevented or corrected elastase-induced pulmonary emphysema in vivo. Treatment with 5 mg x kg(-1) x day(-1) KGF before elastase instillation prevented pulmonary emphysema. This effect was associated with 1) a sharp reduction in bronchoalveolar lavage fluid total protein and inflammatory cell recruitment, 2) a reduction in the pulmonary expression of the chemokines CCL2 (or monocyte chemoattractant protein-1) and CXCL2 (or macrophage inflammatory protein-2alpha) and of the adhesion molecules ICAM-1 and VCAM-1, 3) a reduction in matrix metalloproteinase (MMP)-2 and MMP-9 activity at day 3, and 4) a major reduction in DNA damage detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) in alveolar cells at day 7. Treatment with KGF after elastase instillation had no effect on elastase-induced emphysema despite the conserved expression of the KGF receptor in the lungs of elastase-instilled animals as determined by immunohistochemistry. In vitro, KGF abolished the elastase-induced increase in CCL2, CXCL2, and ICAM-1 mRNA in the MLE-12 murine alveolar epithelial cell line. We conclude that KGF pretreatment protected against elastase-induced pulmonary inflammation, activation of MMPs, alveolar cell DNA damage, and subsequent emphysema in mice.  相似文献   

16.
CD47 plays an important but incompletely understood role in the innate and adaptive immune responses. CD47, also called integrin-associated protein, has been demonstrated to associate in cis with β1 and β3 integrins. Here we test the hypothesis that CD47 regulates adhesive functions of T-cell α4β1 (VLA-4) and αLβ2 (LFA-1) in in vivo and in vitro models of inflammation. Intravital microscopy studies reveal that CD47/ Th1 cells exhibit reduced interactions with wild-type (WT) inflamed cremaster muscle microvessels. Similarly, murine CD47/ Th1 cells, as compared with WT, showed defects in adhesion and transmigration across tumor necrosis factor-α (TNF-α)–activated murine endothelium and in adhesion to immobilized intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) under flow conditions. Human Jurkat T-cells lacking CD47 also showed reduced adhesion to TNF-α–activated endothelium and ICAM-1 and VCAM-1. In cis interactions between Jurkat T-cell β2 integrins and CD47 were detected by fluorescence lifetime imaging microscopy. Unexpectedly, Jurkat CD47 null cells exhibited a striking defect in β1 and β2 integrin activation in response to Mn2+ or Mg2+/ethylene glycol tetraacetic acid treatment. Our results demonstrate that CD47 associates with β2 integrins and is necessary to induce high-affinity conformations of LFA-1 and VLA-4 that recognize their endothelial cell ligands and support leukocyte adhesion and transendothelial migration.  相似文献   

17.
The β2 integrins and intercellular adhesion molecule-1 (ICAM-1) are important for monocyte migration through inflammatory endothelium. Here we demonstrate that the integrin αvβ3 is also a key player in this process. In an in vitro transendothelial migration assay, monocytes lacking β3 integrins revealed weak migratory ability, whereas monocytes expressing β3 integrins engaged in stronger migration. This migration could be partially blocked by antibodies against the integrin chains αL, β2, αv, or IAP, a protein functionally associated with αvβ3 integrin. Transfection of β3 integrin chain cDNA into monocytes lacking β3 integrins resulted in expression of the αvβ3 integrin and conferred on these cells an enhanced ability to transmigrate through cell monolayers expressing ICAM-1. These monocytes also engaged in αLβ2-dependent locomotion on recombinant ICAM-1 which was enhanced by αvβ3 integrin occupancy. Antibodies against IAP were able to revert this αvβ3 integrin-dependent cell locomotion to control levels. Finally, adhesion assays revealed that occupancy of αvβ3 integrin could decrease monocyte binding to ICAM-1.In conclusion, we show that αvβ3 integrin modulates αLβ2 integrin-dependent monocyte adhesion to and migration on ICAM-1. This could represent a novel mechanism to promote monocyte motility on vascular ICAM-1 and initiate subsequent transendothelial migration.  相似文献   

18.
Monocytes/macrophages play a critical role in the initiation and progression of a variety of glomerulonephritides. We sought to define the interactions between physiologically activated human monocytes and glomerular mesangial cells (MC) by employing a cell culture system that permits the accurate assessment of the contribution of soluble factors and cell-to-cell contact. Human peripheral blood monocytes, primed with IFN-gamma and GM-CSF, were activated with CD40 ligand (CD40L) or TNF-alpha and cocultured with MC. CD40L-activated monocytes induced higher levels of IL-6, monocyte chemoattractant protein-1 (MCP-1) and ICAM-1 synthesis by MC. Separation of CD40L-activated monocytes from MC by a porous membrane decreased the mesangial synthesis of IL-6 by 80% and ICAM-1 by 45%, but had no effect on MCP-1. Neutralizing Abs against the beta 2 integrins, LFA-1 and Mac-1, decreased IL-6 production by 40 and 50%, respectively. Ligation of mesangial surface ICAM-1 directly enhanced IL-6, but not MCP-1, production. Simultaneous neutralization of soluble TNF-alpha and IL-1 beta decreased MCP-1 production by 55% in membrane-separated cocultures of MC/CD40L-activated monocytes. Paraformaldehyde-fixed CD40L-activated monocytes (to preserve membrane integrity but prevent secretory activity), cocultured with MC at various ratios, induced IL-6, MCP-1, and ICAM-1 synthesis by MC. Plasma membrane preparations from activated monocytes also induced mesangial IL-6 and MCP-1 synthesis. The addition of plasma membrane enhanced TNF-alpha-induced mesangial IL-6 production by approximately 4-fold. Together, these data suggest that the CD40/CD40L is essential for optimal effector function of monocytes, that CD40L-activated monocytes stimulate MC through both soluble factors and cell-to-cell contact mediated pathways, and that both pathways are essential for maximum stimulation of MC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号