首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine PDEdelta was originally copurified with rod cGMP phosphodiesterase (PDE) and shown to interact with prenylated, carboxymethylated C-terminal Cys residues. Other studies showed that PDEdelta can interact with several small GTPases including Rab13, Ras, Rap, and Rho6, all of which are prenylated, as well as the N-terminal portion of retinitis pigmentosa GTPase regulator and Arl2/Arl3, which are not prenylated. We show by immunocytochemistry with a PDEdelta-specific antibody that PDEdelta is present in rods and cones. We find by yeast two-hybrid screening with a PDEdelta bait that it can interact with farnesylated rhodopsin kinase (GRK1) and that prenylation is essential for this interaction. In vitro binding assays indicate that both recombinant farnesylated GRK1 and geranylgeranylated GRK7 co-precipitate with a glutathione S-transferase-PDEdelta fusion protein. Using fluorescence resonance energy transfer techniques exploiting the intrinsic tryptophan fluorescence of PDEdelta and dansylated prenyl cysteines as fluorescent ligands, we show that PDEdelta specifically binds geranylgeranyl and farnesyl moieties with a Kd of 19.06 and 0.70 microm, respectively. Our experiments establish that PDEdelta functions as a prenyl-binding protein interacting with multiple prenylated proteins.  相似文献   

2.
Histidine-rich glycoprotein (HRG) is an alpha2-glycoprotein found in mammalian plasma at high concentrations (approximately 150 microg/ml) and is distinguished by its high content of histidine and proline. Structurally, HRG is a modular protein consisting of an N-terminal cystatin-like domain (N1N2), a central histidine-rich region (HRR) flanked by proline-rich sequences, and a C-terminal domain. HRG binds to cell surfaces and numerous ligands such as plasminogen, fibrinogen, thrombospondin, C1q, heparin, and IgG, suggesting that it may act as an adaptor protein either by targeting ligands to cell surfaces or by cross-linking soluble ligands. Despite the suggested functional importance of HRG, the cell-binding characteristics of the molecule are poorly defined. In this study, HRG was shown to bind to most cell lines in a Zn(2+)-dependent manner, but failed to interact with the Chinese hamster ovary cell line pgsA-745, which lacks cell-surface glycosaminoglycans (GAGs). Subsequent treatment of GAG-positive Chinese hamster ovary cells with mammalian heparanase or bacterial heparinase III, but not chondroitinase ABC, abolished HRG binding. Furthermore, blocking studies with various GAG species indicated that only heparin was a potent inhibitor of HRG binding. These data suggest that heparan sulfate is the predominate cell-surface ligand for HRG and that mammalian heparanase is a potential regulator of HRG binding. Using recombinant forms of full-length HRG and the N-terminal N1N2 domain, it was shown that the N1N2 domain bound specifically to immobilized heparin and cell-surface heparan sulfate. In contrast, synthetic peptides corresponding to the Zn(2+)-binding HRR of HRG did not interact with cells. Furthermore, the binding of full-length HRG, but not the N1N2 domain, was greatly potentiated by physiological concentrations of Zn2+. Based on these data, we propose that the N1N2 domain binds to cell-surface heparan sulfate and that the interaction of Zn2+ with the HRR can indirectly enhance cell-surface binding.  相似文献   

3.
Retinitis pigmentosa (RP) is a genetically heterogeneous retinal degeneration characterized by photoreceptor death, which results in visual failure. Here, we used a combination of homozygosity mapping and exome sequencing to identify mutations in ARL2BP, which encodes an effector protein of the small GTPases ARL2 and ARL3, as causative for autosomal-recessive RP (RP66). In a family affected by RP and situs inversus, a homozygous, splice-acceptor mutation, c.101−1G>C, which alters pre-mRNA splicing of ARLBP2 in blood RNA, was identified. In another family, a homozygous c.134T>G (p.Met45Arg) mutation was identified. In the mouse retina, ARL2BP localized to the basal body and cilium-associated centriole of photoreceptors and the periciliary extension of the inner segment. Depletion of ARL2BP caused cilia shortening. Moreover, depletion of ARL2, but not ARL3, caused displacement of ARL2BP from the basal body, suggesting that ARL2 is vital for recruiting or anchoring ARL2BP at the base of the cilium. This hypothesis is supported by the finding that the p.Met45Arg amino acid substitution reduced binding to ARL2 and caused the loss of ARL2BP localization at the basal body in ciliated nasal epithelial cells. These data demonstrate a role for ARL2BP and ARL2 in primary cilia function and that this role is essential for normal photoreceptor maintenance and function.  相似文献   

4.
Arf-like proteins (Arl) share certain characteristic features with the Arf subfamily of Ras superfamily proteins, but their function is unknown. Here, we show by a variety of spectroscopic techniques that Arl2, unlike most other Ras-related proteins, has micromolar rather than picomolar affinity for nucleotides. As a consequence of low affinity, nucleotide dissociation rates are rather fast, arguing that it is not regulated by guanine nucleotide exchange factors. Arl2 is isolated as prey in a yeast double hybrid screen using phosphodiesterase 6delta (PDEdelta) as bait. This interaction is dependent on GTP, and the binding of PDEdelta substantially stabilizes GTP binding, increasing affinity and decreasing dissociation rates by a similar factor. Among all Arl proteins tested, PDEdelta only interacted with the closely related proteins Arl2 and Arl3, strongly suggesting that Arl2/3 are specific regulators of PDEdelta.  相似文献   

5.
Histidine-rich glycoprotein (HRG) is an abundant plasma glycoprotein that has a multidomain structure, interacts with many ligands, and has been shown to regulate a number of important biological processes. HRG ligands include Zn(2+) and haem, tropomyosin, heparin and heparan sulphate, plasminogen, plasmin, fibrinogen, thrombospondin, IgG, FcgammaR and complement. In many cases, the histidine-rich region of the molecule enhances ligand binding following interaction with Zn(2+) or exposure to low pH, conditions associated with sites of tissue injury or tumour growth. The multidomain nature of HRG indicates that it can act as an extracellular adaptor protein, bringing together disparate ligands, particularly on cell surfaces. HRG binds to most cells primarily via heparan sulphate proteoglycans, binding which is also potentiated by elevated free Zn(2+) levels and low pH. Recent reports have shown that HRG can modulate angiogenesis and additional studies have shown that it may regulate other physiological processes such as cell adhesion and migration, fibrinolysis and coagulation, complement activation, immune complex clearance and phagocytosis of apoptotic cells. This review outlines the molecular, structural, biological and clinical properties of HRG as well as describing the role of HRG in various physiological processes.  相似文献   

6.
The present study addresses the capacity of heregulin (HRG), a ligand of type I receptor tyrosine kinases, to transactivate the progesterone receptor (PR). For this purpose, we studied, on the one hand, an experimental model of hormonal carcinogenesis in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in female BALB/c mice and, on the other hand, the human breast cancer cell line T47D. HRG was able to exquisitely regulate biochemical attributes of PR in a way that mimicked PR activation by progestins. Thus, HRG treatment of primary cultures of epithelial cells of the progestin-dependent C4HD murine mammary tumor line and of T47D cells induced a decrease of protein levels of PRA and -B isoforms and the downregulation of progesterone-binding sites. HRG also promoted a significant increase in the percentage of PR localized in the nucleus in both cell types. DNA mobility shift assay revealed that HRG was able to induce PR binding to a progesterone response element (PRE) in C4HD and T47D cells. Transient transfections of C4HD and T47D cells with a plasmid containing a PRE upstream of a chloramphenicol acetyltransferase (CAT) gene demonstrated that HRG promoted a significant increase in CAT activity. In order to assess the molecular mechanisms underlying PR transactivation by HRG, we blocked ErbB-2 expression in C4HD and T47D cells by using antisense oligodeoxynucleotides to ErbB-2 mRNA, which resulted in the abolishment of HRG's capacity to induce PR binding to a PRE, as well as CAT activity in the transient-transfection assays. Although the inhibition of HRG binding to ErbB-3 by an anti-ErbB-3 monoclonal antibody suppressed HRG-induced PR activation, the abolishment of HRG binding to ErbB-4 had no effect on HRG activation of PR. To investigate the role of mitogen-activated protein kinases (MAPKs), we used the selective MEK1/MAPK inhibitor PD98059. Blockage of MAPK activation resulted in complete abrogation of HRG's capacity to induce PR binding to a PRE, as well as CAT activity. Finally, we demonstrate here for the first time that HRG-activated MAPK can phosphorylate both human and mouse PR in vitro.  相似文献   

7.
In previous studies we showed that the plasma protein histidine-rich glycoprotein (HRG) binds strongly to pooled human IgG. In the present work myeloma proteins consisting of different human IgG subclasses were examined for their ability to interact with human HRG. Using an IAsys optical biosensor we found initially that IgG subclasses differ substantially in their affinity of interaction with HRG. However, the most striking finding was the observation that the kinetics of the HRG interaction was dramatically affected by whether the IgG subclasses contained the kappa or lambda light (L)-chains. Thus, the on-rate for the binding of HRG to the kappa L-chain containing IgG1 and IgG2 (IgG1kappa and IgG2kappa) was approximately 4- and approximately 10-fold faster than that for the binding of HRG to lambda L-chain containing IgG1 and IgG2 (IgG1lambda and IgG2lambda), respectively, with the dissociation constants (K(d)) in the range 3-5 nM and 112-189 nM for the kappa and lambda isoforms, respectively. In contrast, the on-rate for the binding of HRG to IgG3kappa and IgG4kappa was found to be 9- and 20-fold slower than that for the binding of HRG to IgG3lambda and IgG4lambda, respectively, with the K(d) in the range 147-268 nM and 96-109 nM for the kappa and lambda isoforms, respectively. The binding of HRG to immunoglobulins containing the kappa L-chain (particularly IgG1kappa) was generally potentiated in the presence of a physiological concentration (20 microM) of Zn(2+) (K(d) decreased to 0.60 +/- 0.01 for IgG1kappa), but Zn(2+) had no effect or slightly inhibited the binding of HRG to immobilized IgG subclasses possessing the lambda L-chain. Interestingly, HRG also bound differentially to Bence Jones (BJ) proteins containing kappa and lambda L-chains, with HRG having a 14-fold lower K(d) for BJkappa than for BJlambda when 20 microM Zn(2+) was present. HRG also bound to IgM (IgMkappa), but the affinity of this interaction (K(d) approximately 1.99 +/- 0.05 microM) was markedly lower than the interaction with IgG, and the affinity was actually decreased 4-fold in the presence of Zn(2+). The results demonstrate that both the heavy (H)- and L-chain type have a profound effect on the binding of HRG to different IgG subclasses and provide the first evidence of a functional difference between the kappa and lambda L-chains of immunoglobulins.  相似文献   

8.
9.
The plasma protein histidine-rich glycoprotein (HRG) affects the morphology and function of both endothelial cells (ECs) and monocytes/macrophages in cancer. Here, we examined the mechanism of action of HRG's effect on ECs. HRG suppressed adhesion, spreading and migration of ECs specifically on collagen I (COL I) whereas ECs seeded on other extracellular matrix proteins were insensitive to HRG. HRG did not bind specifically to COL I or to the α-integrin binding site on collagen, GFOGER. Furthermore, HRG's inhibition of EC adhesion was not dependent upon heparan sulfate (HS) moieties as heparitinase-treated ECs remained sensitive to HRG. C2C12 cells expressing α2 integrin, the major collagen-binding α-integrin subunit in ECs, showed increased binding of HRG compared with wild type C2C12 cells lacking the α2 subunit. Recombinant α2 I-domain protein bound HRG and to a higher extent when in active conformation. However, the α2 I-domain bound weakly to HRG compared with COL I and the purified α2β1 ectodomain complex failed to retain HRG. We conclude that HRG binds to α2 integrin through low-affinity interactions in a HS-independent manner, thereby blocking EC-adhesion to COL I.  相似文献   

10.
Histidine-rich glycoprotein (HRG) is an abundant protein that binds fibrinogen and other plasma proteins in a Zn(2+)-dependent fashion but whose function is unclear. HRG has antimicrobial activity, and its incorporation into fibrin clots facilitates bacterial entrapment and killing and promotes inflammation. Although these findings suggest that HRG contributes to innate immunity and inflammation, little is known about the HRG-fibrin(ogen) interaction. By immunoassay, HRG-fibrinogen complexes were detected in Zn(2+)-supplemented human plasma, a finding consistent with a high affinity interaction. Surface plasmon resonance determinations support this concept and show that in the presence of Zn(2+), HRG binds the predominant γ(A)/γ(A)-fibrinogen and the γ-chain elongated isoform, γ(A)/γ'-fibrinogen, with K(d) values of 9 nm. Likewise, (125)I-labeled HRG binds γ(A)/γ(A)- or γ(A)/γ'-fibrin clots with similar K(d) values when Zn(2+) is present. There are multiple HRG binding sites on fibrin(ogen) because HRG binds immobilized fibrinogen fragment D or E and γ'-peptide, an analog of the COOH terminus of the γ'-chain that mediates the high affinity interaction of thrombin with γ(A)/γ'-fibrin. Thrombin competes with HRG for γ'-peptide binding and displaces (125)I-HRG from γ(A)/γ'-fibrin clots and vice versa. Taken together, these data suggest that (a) HRG circulates in complex with fibrinogen and that the complex persists upon fibrin formation, and (b) by competing with thrombin for γ(A)/γ'-fibrin binding, HRG may modulate coagulation. Therefore, the HRG-fibrin interaction may provide a novel link between coagulation, innate immunity, and inflammation.  相似文献   

11.
CC Li  TS Wu  CF Huang  LT Jang  YT Liu  ST You  GG Liou  FJ Lee 《PloS one》2012,7(8):e43552
ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs) at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N) reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N) was required for its localization to mitochondria. The localization of ARL4D(T35N) to the mitochondria reduced the mitochondrial membrane potential (ΔΨm) and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N) was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.  相似文献   

12.
The ADP-ribosylation factor-like 2 (ARL2) GTPase and its binding partner binder of ARL2 (BART) are ubiquitously expressed in rodent and human tissues and are most abundant in brain. Both ARL2 and BART are predominantly cytosolic, but a pool of each was found associated with mitochondria in a protease-resistant form. ARL2 was found to lack covalent N-myristoylation, present on all other members of the ARF family, thereby preserving the N-terminal amphipathic alpha-helix as a potential mitochondrial import sequence. An overlay assay was developed to identify binding partners for the BART.ARL2.GTP complex and revealed a specific interaction with a protein in bovine brain mitochondria. Purification and partial microsequencing identified the protein as an adenine nucleotide transporter (ANT). The overlay assay was performed on mitochondria isolated from five different tissues from either wild-type or transgenic mice deleted for ANT1. Results confirmed that ANT1 is the predominant binding partner for the BART.ARL2.GTP complex and that the structurally homologous ANT2 protein does not bind the complex. Cardiac and skeletal muscle mitochondria from ant1(-)/ant1(-) mice had increased levels of ARL2, relative to that seen in mitochondria from wild-type animals. We conclude that the amount of ARL2 in mitochondria is subject to regulation via an ANT1-sensitive pathway in muscle tissues.  相似文献   

13.
Post-translational modifications of GTPases from the Ras superfamily enable them to associate with membrane compartments where they exert their biological activities. However, no protein acting like Rho and Rab dissociation inhibitor (GDI) that regulate the membrane association of Rho and Rab GTPases has been described for Ras and closely related proteins. We report here that the delta subunit of retinal rod phosphodiesterase (PDEdelta) is able to interact with prenylated Ras and Rap proteins, and to solubilize them from membranes, independently of their nucleotide-bound (GDP or GTP) state. We show that PDEdelta exhibits striking structural similarities with RhoGDI, namely conservation of the Ig-like fold and presence of a series of hydrophobic residues which could act as in RhoGDI to sequester the prenyl group of its target proteins, thereby providing structural support for the biochemical activity of PDEdelta. We observe that the overexpression of PDEdelta interferes with Ras trafficking and propose that it may play a role in the process that delivers prenylated proteins from endomembranes, once they have undergone proteolysis and carboxymethylation, to the structures that ensure trafficking to their respective resident compartments.  相似文献   

14.
15.
ARF-like proteins (ARLs) comprise a functionally distinct group of incompletely characterized members in the ARF family of RAS-related GTPases. We took advantage of the GTP binding characteristics of human ARL2 to develop a specific, high affinity binding assay that allowed the purification of a novel ARL2-binding protein. A 19-kDa protein (BART, Binder of Arl Two) was identified and purified from bovine brain homogenate. BART binding is specific to ARL2.GTP with high affinity but does not interact with ARL2.GDP or activated ARF or RHO proteins. Based on peptide sequences of purified bovine BART, the human cDNA sequence was determined. The 489-base pair BART open reading frame encodes a novel 163-amino acid protein with a predicted molecular mass of 18,822 Da. Recombinant BART was found to bind ARL2.GTP in a manner indistinguishable from native BART. Northern and Western analyses indicated BART is expressed in all tissues sampled. The lack of detectable membrane association of ARL2 or BART upon activation of ARL2 is suggestive of actions quite distinct from those of the ARFs. The lack of ARL2 GTPase-activating protein activity in BART led us to conclude that the specific interaction with ARL2.GTP is most consistent with BART being the first identified ARL2-specific effector.  相似文献   

16.
富组氨酸糖蛋白(HRG)为一种多结构域血浆糖蛋白,可与多种配体结合而行使多种功能.HRG配体包括锌离子、肝素和硫酸肝素、纤溶酶原、纤溶酶、纤维蛋白原、凝血酶敏感素、原肌球蛋白、IgG、FcγR及补体.在锌离子存在或在低pH的环境中(如组织损伤或肿瘤生长),HRG的富含组氨酸结构域与配体的结合能力加强.HRG的多结构域特点及其与多种配体结合的性质表明,其可以作为细胞外衔接蛋白衔接细胞表面的不同配体.除了细胞表面分子,HRG还可以结合IgG,从而阻止可溶性免疫复合物的产生.HRG与大多数细胞发生结合的功能是在锌离子存在或低pH环境下,通过与细胞表面硫酸肝素蛋白聚糖相互作用实现的.HRG还具有加强凋亡细胞、坏死的吞噬细胞和免疫复合物的清除、抗血管新生、细胞的粘附和迁移、纤维蛋白溶解作用、血凝固、补体激活等生理活动调节等功能.本文针对HRG的分子结构与功能及其在临床上的研究进展进行概述.  相似文献   

17.
Heparin binding to rabbit histidine-rich glycoprotein (HRG) was studied in a purified system, allowing for determination of a heparin dissociation constant of approximately 5.5 X 10(-8) M for the interaction with HRG at pH 7.0. The strong interaction between heparin and HRG was demonstrated to be competitive with the binding of both antithrombin and thrombin to the heparin chain. HRG was further tested as a modulator of the anticoagulant activity of heparin by comparing rates of the heparin-catalyzed reaction between antithrombin and thrombin in the presence and absence of added HRG. The heparin-antithrombin-thrombin reaction was modeled using the formalism of a two-substrate enzyme-catalyzed reaction with heparin as the enzyme and HRG analyzed as an enzyme inhibitor. HRG was shown to compete with both antithrombin and thrombin for binding to heparin by this kinetic analysis. Thus, both the kinetic and heparin-binding data indicate that the mechanism by which HRG modulates heparin anticoagulant activity involves competition for heparin with both the inhibitor and the protease. Inhibition by HRG of the heparin-catalyzed reaction was found to be highly dependent on pH, with a sharp increase in inhibition from about 15% to greater than 90% observed as pH was lowered from 7.4 to 7.0. Since little change in the rate of the heparin-catalyzed inhibition of thrombin by antithrombin occurs in this pH region, the dramatic change in HRG inhibition seen upon pH titration may reflect increasing ionic interaction between heparin and HRG due to the protonation of histidine residues which occurs in this pH region.  相似文献   

18.
BACKGROUND: Based on sequence similarities, Arf-like (ARL) proteins have been assigned to the Arf subfamily of the superfamily of Ras-related GTP binding proteins. They have been identified in several isoforms in a wide variety of species. Their cellular function is unclear, but they are proposed to regulate intracellular transport. RESULTS: The 1.7 A crystal structure of murine ARL3-GDP provides a first insight into the structural features of this subgroup of Ar proteins. The N-terminal extension of ARL3 folds into an elongated loop region that is hydrophobically anchored onto the surface by burying 1440 A2. The features observed suggest that ARL3 releases its N terminus and undergoes a beta sheet register shift upon the binding of GTP. The structure and kinetic experiments with fluorescent mGDP demonstrate that tight GDP (but not GTP) binding is achieved in the absence of a magnesium ion. This is due to a lysine residue in the active site, close to the canonical Mg2+ site found in other GTP binding proteins. This is a distinct feature separating ARL2 and ARL3 from Arf proteins. CONCLUSION: The disturbed magnesium binding site and the independence of GDP coordination from the presence of Mg2+ separate ARL2 and ARL3 from Arf proteins. The D sheet register shift, which is similar to that of Arf, that is observed in the present structure, along with the postulated release of the N-terminal extension and the concomitant exposure of a patch of conserved hydrophobic residues in this region suggest that ARL proteins might be localized to target membranes upon exchange of GDP to GTP. Contrary to the situation in Arf, however, the conformational change to ARL-GTP does not require the presence of membranes and might thus be energetically unfavored. Together with the very low affinity described for the interaction of ARL3 with Mg-GTP, this suggests that ARL protein activation requires the presence of effectors stabilizing the GTP coordination rather than guanine nucleotide exchange factors (GEFs).  相似文献   

19.
Histidine-rich glycoprotein (HRG) is a plasma protein implicated in the innate immune system. In recent studies, we showed that either HRG, or the Arg23-Lys66 glycopeptide derived from HRG, in concert with concanavalin A (Con A), promotes a morphological change and adhesion of the human leukemic T-cell line MOLT-4 to culture dishes, and that cell surface glycosaminoglycan or Fcγ receptors do not participate in this cellular event. In the present study, we identified the α-subunit of ATP synthase as one of the HRG-binding proteins on the surface of T-cells by HRG-derived glycopeptide affinity chromatography and by a peptide mass finger printing method. HRG specifically interacted with mitochondrial ATP synthase with a dissociation constant of 66 nM. The presence of α- and β-subunits of ATP synthase on the plasma membrane of MOLT-4 cell was demonstrated by immunofluorescent staining and FACS analysis. The HRG/Con A-induced morphological changes of MOLT-4 cells were specifically inhibited by a monoclonal antibody against the β-subunit of ATP synthase. These results strongly suggest that the cell surface ATP synthase functions as a binding protein for HRG on MOLT-4 cells, which is required for the morphological changes observed in MOLT-4 cells following treatment with HRG/Con A.  相似文献   

20.
Joubert syndrome (JS) and related disorders are a group of autosomal-recessive conditions sharing the "molar tooth sign" on axial brain MRI, together with cerebellar vermis hypoplasia, ataxia, and psychomotor delay. JS is suggested to be a disorder of cilia function and is part of a spectrum of disorders involving retinal, renal, digital, oral, hepatic, and cerebral organs. We identified mutations in ARL13B in two families with the classical form of JS. ARL13B belongs to the Ras GTPase family, and in other species is required for ciliogenesis, body axis formation, and renal function. The encoded Arl13b protein was expressed in developing murine cerebellum and localized to the cilia in primary neurons. Overexpression of human wild-type but not patient mutant ARL13B rescued the Arl13b scorpion zebrafish mutant. Thus, ARL13B has an evolutionarily conserved role mediating cilia function in multiple organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号