首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract Mutants unable to use ethanol for carbon and energy were counterselected from an ethanolutilizing mutant of Escherichia coli K12 derepressed for alcohol dehydrogenase (ADH). Mutants of one class were devoid of ADH activity under anaerobic conditions but exhibited aerobic activities comparable to those of wild-type E. coli. Mutants of a second class exhibited ADH activity levels intermediate between those of the wild-type and derepressed parent. Immunological studies showed that mutants of the former class synthesized far less ADH protein than did the derepressed parent while mutants of the latter class synthesized about the same amount. The ADH mutations in both classes were located within the previously described adh region which contains the structural gene for the activity that is derepressed in the parent. An Eth adh-lac fusion mutant with an insertion in the structural gene was also isolated and characterized. It exhibited no ADH activity under anaerobic conditions and wild-type levels under aerobic conditions. These data are consistent with the existence in E. coli of distinct aerobic and anaerobic ADH enzymes and a derepression of the anaerobic but not the aerobic enzyme in the ethanol utilizing strain.  相似文献   

3.
NDI1 is the unique gene encoding the internal mitochondrial NADH dehydrogenase of Saccharomyces cerevisiae. The enzyme catalyzes the transfer of electrons from intramitochondrial NADH to ubiquinone. Surprisingly, NDI1 is not essential for respiratory growth. Here we demonstrate that this is due to in vivo activity of an ethanol-acetaldehyde redox shuttle, which transfers the redox equivalents from the mitochondria to the cytosol. Cytosolic NADH can be oxidized by the external NADH dehydrogenases. Deletion of ADH3, encoding mitochondrial alcohol dehydrogenase, did not affect respiratory growth in aerobic, glucose-limited chemostat cultures. Also, an ndi1Delta mutant was capable of respiratory growth under these conditions. However, when both ADH3 and NDI1 were deleted, metabolism became respirofermentative, indicating that the ethanol-acetaldehyde shuttle is essential for respiratory growth of the ndi1 delta mutant. In anaerobic batch cultures, the maximum specific growth rate of the adh3 delta mutant (0.22 h(-1)) was substantially reduced compared to that of the wild-type strain (0.33 h(-1)). This is consistent with the hypothesis that the ethanol-acetaldehyde shuttle is also involved in maintenance of the mitochondrial redox balance under anaerobic conditions. Finally, it is shown that another mitochondrial alcohol dehydrogenase is active in the adh3 delta ndi1 delta mutant, contributing to residual redox-shuttle activity in this strain.  相似文献   

4.
The structures, evolution and functions of alcohol dehydrogenase gene families and their products have been scrutinized for half a century. Our understanding of the enzyme structure and catalytic activity of plant alcohol dehydrogenase (ADH-P) is based on the vast amount of information available for its animal counterpart. The probable origins of the enzyme from a simple β-coil and eventual emergence from a glutathione-dependent formaldehyde dehydrogenase have been well described. There is compelling evidence that the small ADH gene families found in plants today are the survivors of multiple rounds of gene expansion and contraction. To the probable original function of their products in the terminal reaction of anaerobic fermentation have been added roles in yeast-like aerobic fermentation and the production of characteristic scents that act to attract animals that serve as pollinators or agents of seed dispersal and to protect against herbivores.  相似文献   

5.
The ethanol productivity of superoxide dismutase (SOD)-deficient mutants ofSaccharomyces cerevisiae was examined under the oxidative stress by Paraquat. It was observed that MnSOD-deficient mutant ofS. cerevisiae had higher ethanol productivity than wild type or CuZnSOD-deficient yeast both in aerobic and in anaerobic culture condition. Pyruvate dehydrogenase activity decreased by 35% and alcohol dehydrogenase activity increased by 32% were observed in MnSOD-deficient yeast grown aerobically. When generating oxygen radicals by Paraquat, the ethanol productivity was increased by 40% in CuZnSOD-deficient or wild strain, resulting from increased activity of alcohol dehydrogenase and decreased activity of pyruvate dehydrogenase. However, the addition of ascorbic acid with Paraquat returned the enzyme activities at the level of control. These results imply that SOD-deficiency in yeast strains may cause the metabolic flux to shift into anaerobic ethanol fermentation in order to avoid their oxidative damages by Paraquat.  相似文献   

6.
The pattern of protein synthesis was compared in several organs of maize (Zea mays L.) under aerobic and anaerobic conditions. Protein synthesis was measured by [35S]methionine incorporation and analysis by two-dimensional native-SDS (sodium lauryl sulfate) polyacrylamide gel electrophoresis and fluorography. The aerobic protein-synthesis profiles were very different for root, endosperm, scutellum and anther wall. However, except for some characteristic qualitative and quantitative differences, the patterns of protein synthesis during anaerobiosis were remarkably similar for these diverse organs and also for mesocotyl and coleoptile. The proteins synthesized were the anaerobic polypeptides (ANPs) which have been previously described in anaerobic roots of seedlings. Leaves exhibited no detectable protein synthesis under anaerobic conditions, and died after a short anaerobic treatment. Evidence is presented that the ANPs are not a generalized response to stress. This indicates that the ANPs are synthesized as a specific response to anaerobic conditions such as flooding.Abbreviations ADH alcohol dehydrogenase - ANP anaerobic polypeptide - SDS sodium lauryl sulfate  相似文献   

7.
We have previously shown that intact plants and cultured plant cells can metabolize and detoxify formaldehyde through the action of a glutathione-dependent formaldehyde dehydrogenase (FDH), followed by C-1 metabolism of the initial metabolite (formic acid). The cloning and heterologous expression of a cDNA for the glutathione-dependent formaldehyde dehydrogenase from Zea mays L. is now described. The functional expression of the maize cDNA in Escherichia coli proved that the cloned enzyme catalyses the NAD+- and glutathione (GSH)-dependent oxidation of formaldehyde. The deduced amino acid sequence of 41 kDa was on average 65% identical with class III alcohol dehydrogenases from animals and less than 60% identical with conventional plant alcohol dehydrogenases (ADH) utilizing ethanol. Genomic analysis suggested the existence of a single gene for this cDNA. Phylogenetic analysis supports the convergent evolution of ethanol-consuming ADHs in animals and plants from formaldehyde-detoxifying ancestors. The high structural conservation of present-day glutathione-dependent FDH in microorganisms, plants and animals is consistent with a universal importance of these detoxifying enzymes.  相似文献   

8.
TOL plasmid pWW0 specifies enzymes for the oxidative catabolism of toluene and xylenes. The upper pathway converts the aromatic hydrocarbons to aromatic carboxylic acids via corresponding alcohols and aldehydes and involves three enzymes: xylene oxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase. The synthesis of these enzymes is positively regulated by the product of xylR. Determination of upper pathway enzyme levels in bacteria carrying Tn5 insertion mutant derivatives of plasmid pWW0-161 has shown that the genes for upper pathway enzymes are organized in an operon with the following order: promoter-xylC (benzaldehyde dehydrogenase gene[s])-xylA (xylene oxygenase gene[s])-xylB (benzyl alcohol dehydrogenase gene). Subcloning of the upper pathway genes in a lambda pL promoter-containing vector and analysis of their expression in Escherichia coli K-12 confirmed this order. Two distinct enzymes were found to attack benzyl alcohol, namely, xylene oxygenase and benzyl alcohol dehydrogenase; and their catalytic activities were additive in the conversion of benzyl alcohol to benzaldehyde. The fact that benzyl alcohol is both a product and a substrate of xylene oxygenase indicates that this enzyme has a relaxed substrate specificity.  相似文献   

9.
Mutants of Escherichia coli which overproduce alcohol dehydrogenase were obtained by selection for the ability to use ethanol as an acetate source in a strain auxotrophic for acetate. A mutant having a 20-fold overproduction of alcohol dehydrogenase was able to use ethanol only to fulfill its acetate requirement, whereas two mutants with a 60-fold overproduction were able to use ethanol as a sole carbon source. The latter two mutants produced only 25% of the wild-type level of nitrate reductase, when grown under anaerobic conditions. Alcohol dehydrogenase production was largely unaffected by catabolite repression but was repressed by nitrate under both aerobic and anaerobic conditions. The genetic locus responsible for alcohol dehydrogenase overproduction was located at min 27 on the E. coli genetic map; the gene order, as determined by transduction, was trp tonB adh chlC hemA. The possible relationship of alcohol dehydrogenase to anaerobic redox systems such as formate-nitrate reductase is discussed.  相似文献   

10.
Abscisic Acid induces anaerobiosis tolerance in corn   总被引:6,自引:3,他引:3       下载免费PDF全文
Flooding is a frequently occurring environmental stress that can severely affect plant growth. This study shows that treatment of corn (Zea mays L.) seedlings with abscisic acid (ABA) increases their tolerance to anoxia 10-fold over untreated seedlings and twofold over seedlings treated with water. Corn seedlings stressed anoxically for 1 day showed only 8% survival when planted in vermiculite. Pretreatment of root tips with 100 micromolar ABA or water for 24 hours before the 1 day anoxic stress increased the anoxic survivability of seedlings to 87% and 47%, respectively. Cycloheximide (5 milligrams per liter), added together with ABA, reduced the seedling survival rate, indicating that the induction of anoxic tolerance in corn by ABA was partly a result of the synthesis of new proteins. ABA treatment induced a threefold increase in alcohol dehydrogenase enzyme activity in corn roots. However, after 24 h of anoxia, alcohol dehydrogenase enzyme activity between the ABA-pretreated and non-pretreated corn roots was not significantly different. The results indicated that ABA played an important role in inducing anoxic tolerance in corn and that the induced tolerance was probably mediated by an increase in alcohol dehydrogenase enzyme activity before the anoxic stress.  相似文献   

11.
A genomic library of Acetobacter aceti DNA was constructed by using a broad-host-range cosmid vector. Complementation of a spontaneous alcohol dehydrogenase-deficient mutant resulted in the isolation of a plasmid designated pAA701. Subcloning and deletion analysis of pAA701 limited the region that complemented the deficiency in alcohol dehydrogenase activity of the mutant. The nucleotide sequence of this region was determined and showed that this region contained the full structural gene for the 72-kilodalton dehydrogenase subunit of the alcohol dehydrogenase enzyme complex. The predicted amino acid sequence of the gene showed homology with sequences of methanol dehydrogenase structural genes of Paracoccus denitrificans and Methylobacterium organophilum.  相似文献   

12.
13.
An NADP(H)-dependent alcohol dehydrogenase was isolated from the hyperthermophilic archaeon Thermococcus strain AN1. This enzyme is a homotetramer with a subunit molecular weight of 46,700. The enzyme oxidizes a series of primary linear alcohols but not methanol. The pH and temperature optima with ethanol as the substrate are 6.8 to 7.0 and 85 degrees C, respectively. The enzyme readily reduced acetaldehyde with NADPH as the cofactor. The gene encoding this enzyme has been cloned and sequenced. An open reading frame of 1,218 bp, starting with ATG and ending with TGA, was identified and corresponded to 406 amino acids. Sequence comparisons show that this Thermococcus strain AN1 enzyme has significant homologies with enzymes from the newly defined type III alcohol dehydrogenase family. Thermococcus strain AN1 alcohol dehydrogenase is the first archaeal enzyme belonging to this family.  相似文献   

14.
Maize (Zea mays L.) seeds differ in their relative tolerance to the anaerobic environment caused by flooding. Seed tolerance to flooding stress depends on cellular and metabolic processes since gross anatomical responses have not developed at the pre-emergence stage. The study reported here characterizes the activities of four anaerobic respiratory enzymes: pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and malic enzyme (ME) in the flood-tolerant A632 and floodsusceptible Mo 17 inbred maize seeds during flooding at 10 and 25°C. Each inbred consisted of two seed lots possessing 95% and 75% germination levels. Flooding increased the activities of all four enzymes. However, no consistent correlation between anaerobic enzyme activity and flood tolerance was observed across genotype, seed quality and flooding temperature. The results indicate that it may not be feasible to use whole-seed anaerobic enzyme activities to predict maize seed performance under flooding stress. Contribution from the Soil Drainage Research Unit, USDA-ARS, Columbus, OH, in cooperation with the Ohio Agricultural Research and Development Center, The Ohio State University. OARDC Journal Article No. 66–86.  相似文献   

15.
The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments.  相似文献   

16.
The in vivo and in vitro activity of alcohol dehydrogenase from baker's yeast maintained under aerobic and anaerobic conditions was measured. In vivo measurements were made in cells "permeabilised" with toluene. Michaelis constants (NAD+ as substrate) were found to be almost identical as those reported for purified preparations. In addition the Km of the enzyme from cells incubated under anaerobic conditions was virtually identical to that from cells from aerobic conditions. The activity of the enzyme was found to be greater (in both "permeabilised" cells and extracts) in cells maintained under nitrogen than air. Cells metabolizing glucose in N2 produced greater levels of ethanol than in air and the rate of NAD+ reduction was also found to be greater in N2 than in air. The results indicate that it was feasible to determine rates of this enzyme in vivo and that the difference in activity of alcohol dehydrogenase under N2 and air may conceivably account for differences in rates of glucose utilisation, ethanol production and NAD+ reduction in air and nitrogen.  相似文献   

17.
During the last decade, it was established that the class III alcohol dehydrogenase (ADH3) enzyme, also known as glutathione-dependent formaldehyde dehydrogenase (FALDH; EC 1.2.1.1), catalyzes the NADH-dependent reduction of S-nitrosoglutathione (GSNO) and therefore was also designated as GSNO reductase. This finding has opened new aspects in the metabolism of nitric oxide (NO) and NO-derived molecules where GSNO is a key component. In this article, current knowledge of the involvement and potential function of this enzyme during plant development and under biotic/abiotic stress is briefly reviewed.Key words: nitric oxide, nitrosative stress, S-nitrosoglutathione reductase  相似文献   

18.
1,3-Propanediol dehydrogenase (EC 1.1.1.202) was purified to homogeneity from Citrobacter freundii grown anaerobically on glycerol in continuous culture. The enzyme is an octamer of a polypeptide of 43,400 Da. When tested as a dehydrogenase, the enzyme was most active with substrates containing two primary alcohol groups separated by one or two carbon atoms. In the physiological direction, 3-hydroxypropionaldehyde was the preferred substrate. The apparent Km values of the enzyme for 3-hydroxypropionaldehyde and NADH were 140 and 33 microM, respectively. The enzyme was inhibited by chelators of divalent cations but could be reactivated by the addition of Fe2+. The dhaT gene, encoding the 1,3-propanediol dehydrogenase, was cloned, and its nucleotide sequence (1,164 bp) was determined. The deduced dhaT gene product (387 amino acids, 41,324 Da) showed a high level of similarity to a novel family (type III) of alcohol dehydrogenases. The dhaT gene was overexpressed in Escherichia coli 274-fold by using the T7 RNA polymerase/promoter system.  相似文献   

19.
Alcohol dehydrogenase E (AdhE) is an Fe-enzyme that, under anaerobic conditions, is involved in dissimilation of glucose. The enzyme is also present under aerobic conditions, its amount is about one-third and its activity is only one-tenth of the values observed under anaerobic conditions. Nevertheless, its function in the presence of oxygen remained ignored. The data presented in this paper led us to propose that the enzyme has a protective role against oxidative stress. Our results indicated that cells deleted in adhE gene could not grow aerobically in minimal media, were extremely sensitive to oxidative stress and showed division defects. In addition, compared with wild type, mutant cells displayed increased levels of internal peroxides (even higher than those found in a Delta katG strain) and increased protein carbonyl content. This pleiotropic phenotype disappeared when the adhE gene was reintroduced into the defective strain. The purified enzyme was highly reactive with hydrogen peroxide (with a Ki of 5 microM), causing inactivation due to a metal-catalyzed oxidation reaction. It is possible to prevent this reactivity to hydrogen peroxide by zinc, which can replace the iron atom at the catalytic site of AdhE. This can also be achieved by addition of ZnSO4 to cell cultures. In such conditions, addition of hydrogen peroxide resulted in reduced cell viability compared with that obtained without the Zn treatment. We therefore propose that AdhE acts as a H2O2 scavenger in Escherichia coli cells grown under aerobic conditions.  相似文献   

20.
用容重分别为1.20和1.55 g·cm-3的土壤进行盆栽试验,研究了土壤紧实胁迫对‘津春4号’黄瓜根系呼吸代谢的影响.结果表明: 土壤紧实胁迫条件下,黄瓜根系中丙酮酸脱羧酶、乙醇脱氢酶和乳酸脱氢酶活性显著提高;无氧呼吸主要产物(乙醇、乙醛和乳酸)含量显著升高;参与有氧呼吸的苹果酸脱氢酶、琥珀酸脱氢酶和异柠檬酸脱氢酶活性显著下降,丙酮酸和琥珀酸含量显著提高,苹果酸含量显著下降.说明在土壤紧实胁迫条件下,黄瓜根系的有氧呼吸受到显著抑制,无氧呼吸过程加强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号