首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Estrogen receptor (ER) function is mediated by multi-domain co-regulator proteins. A fluorescently labelled fragment of the human PGC-1alpha co-regulator (residues 91-408) bearing the two motifs most strongly implicated in interactions with nuclear receptors (NR box2 and NR box3), was used to characterize in vitro binding of PGC-1alpha to ER. Anisotropy measurements revealed that the affinity of this PGC-1alpha fragment for human ERalpha and beta was fairly strong in the presence of estradiol (approximately 5 nM), and that unlike a similar fragment of SRC-1 (570-780), PGC-191-408 exhibited ligand-independent interactions with ER, particularly with ERbeta (Kd approximately 30 nM). Competition experiments of the complex between ERalpha and fluorescently labelled PGC-1 91-408 with unlabelled SRC-1 570-780 showed that PGC-1 91-408 was an efficient competitor of SRC-1 570-780, while the inverse was not true, underscoring their distinct modes of binding. The anisotropy data provide strong evidence for a ternary complex between ERalpha, SRC-1 570-780 and PGC-1 91-408. GST-pull-down experiments with deletion mutants of ERalpha revealed that the constitutive binding of PGC-1 91-408 requires the presence of the linker domain between the DNA binding and ligand binding domains (DBD and LBD). Homology modeling studies of the different regions of full length PGC-1alpha confirmed the lack of compact tertiary structure of the N-terminal region bearing the NR box motifs, and suggested a slightly different mode of interaction compared to the NR box motifs of SRC-1. They also provided reasonable structural models for the coiled-coil dimerization motif at residues 633-675, as well as the C-terminal putative RNA binding domain, raising important questions concerning the stoichiometry of its complex with the nuclear receptors.  相似文献   

2.
3.
4.
Integrin α9β1 mediates accelerated cell adhesion and migration through interactions with a number of diverse extracellular ligands. We have shown previously that it directly binds the vascular endothelial growth factors (VEGF) A, C, and D and contributes to VEGF-induced angiogenesis and lymphangiogenesis. Until now, the α9β1 binding site in VEGF has not been identified. Here, we report that the three-amino acid sequence, EYP, encoded by exon 3 of VEGF-A is essential for binding of VEGF to integrin α9β1 and induces adhesion and migration of endothelial and cancer cells. EYP is specific for α9β1 binding and neither requires nor activates VEGFR-2, the cognate receptor for VEGF-A. Following binding to EYP, integrin α9β1 transduces cell migration through direct activation of the integrin signaling intermediates Src and focal adhesion kinase. This interaction is biologically important because it mediates in vitro endothelial cell tube formation, wound healing, and cancer cell invasion. These novel findings identify EYP as a potential site for directed pharmacotherapy.  相似文献   

5.
Neural cell adhesion molecule (NCAM) contributes to axon growth and guidance during development and learning and memory in adulthood. Although the Ig domains mediate homophilic binding, outgrowth activity localizes to two membrane proximal fibronectin-like domains. The first of these contains a site identified as a potential FGF receptor (FGFR) activation motif (FRM) important for NCAM stimulation of neurite outgrowth, but its activity has hitherto remained hypothetical. Here, we have tested the effects of a domain-specific antibody and peptides corresponding to the FRM in cellular assays in vitro. The first fibronectin domain antibody inhibited NCAM-stimulated outgrowth, indicating the importance of the domain for NCAM function. Monomeric FRM peptide behaved as an inverse agonist; low concentrations specifically inhibited neurite outgrowth stimulated by NCAM and cellular responses to FGF2, while saturating concentrations stimulated FGFR-dependent neurite outgrowth equivalent to NCAM itself. Dendrimeric FRM peptide was 125-fold more active and stimulated FGFR activation, FGFR-dependent and FGF-mimetic neurite outgrowth and cell survival (but not proliferation). We conclude that the FRM peptide contains NCAM-mimetic bioactivity accounted for by stimulation of FGF signalling pathways at the level of or upstream from FGF receptors, and discuss the possibility that FRM comprises part of an FGFR activation site on NCAM.  相似文献   

6.
Cyclic Arg-Gly-Asp-D-Phe-Lys [c(RGDfK)] targeted poly(L-glutamic acid) (PGA)-(Gd-DO3A) conjugate with a biodegradable cystamine spacer was prepared and evaluated for in vivo detection of an angiogenesis biomarker, alpha(v)beta3 integrin, in neoplastic tissues with T1 mapping, a quantitative magnetic resonance imaging (MRI) technique. The binding activity of the c(RGDfK) containing conjugate was investigated using in vitro vitronectin assay with human prostate carcinoma DU145 cell line and Kaposi's sarcoma SLK cell line. The peptide c(RGDfK) and PGA-cystamine-(Gd-DO3A) conjugate were used as controls. The binding affinity of polymer bound c(RGDfK) was slightly lower than free c(RGDfK) peptide. The RGD targeted conjugate had higher binding affinity to the DU145 cells than the SLK cells, which was consistent to free c(RGDfK). The imaging of alpha(v)beta3 integrin with targeted PGA-cystamine-(Gd-DO3A) was evaluated in nude mice bearing DU145 and SLK xenografts at a dose of 5 micromol-Gd/kg. The targeted conjugate demonstrated higher in vivo binding affinity to the DU145 xenografts than the SLK xenografts, resulting in a significant decrease of T1 values of water protons in the periphery of the DU145 tumors as shown in the MR T1 maps. No significant decrease of T1 values was observed in the SLK tumor with the targeted conjugate and in both tumors with the non-targeted conjugate. The targeted polymeric Gd(III) chelate conjugate with a degradable spacer has the potential to be a new paradigm for safe and effective probes in molecular imaging with quantitative MR T1 mapping.  相似文献   

7.
8.
Based on the crystal structure of the extracellular domain (ECD) of the mouse nicotinic acetylcholine receptor (nAChR) alpha1 subunit bound to α-bungarotoxin (α-Btx) we have generated in silico models of the human nAChR α1 bound to α-Btx and α-cobratoxin (α-Cbtx), both in the presence and in the absence of the N-linked carbohydrate chain. To gain further insight into the structural role of glycosylation molecular dynamics (MD) simulations were carried out in explicit solvent so as to compare the conformational dynamics of the binding interface between nAChR α1 and the two toxins. An interesting observation during the course of the MD simulations is the strengthening of the receptor-toxin interaction in the presence of the carbohydrate chain, mediated through a shift in the position of the sugars towards the bound toxin. Critical protein-sugar interactions implicate residues Ser187 and Trp184 of nAChR and Thr6, Ser9, and Thr15 of α-Btx, as well as Thr6 and Pro7 of α-Cbtx. Analysis of the predicted residue-specific intermolecular interactions is intended to inspire biophysical studies on the functional role of glycosylation in the gating mechanism.  相似文献   

9.
Signalling through the IGF1R [type 1 IGF (insulin-like growth factor) receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice) the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i) the activity of a LacZ (β-galactosidase) reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene) and (ii) the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I) in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic) mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β) significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i) retarded brain growth, (ii) reduced precursor proliferation and (iii) decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.  相似文献   

10.
Members of the Toll-like receptor (TLR) family are currently under intense scrutiny for their role in the sampling and recognition of pathogens. It has already been reported that both vaccinia virus and Yersinia spp. express proteins that help them evade the TLR mediated immune response, acting through the Toll-interleukin-1 receptor-resistance (TIR) domain and leucine-rich repeat region of the host TLRs respectively. The TIR domain is involved in the dimerisation of the TLRs and their complexation with their adapter molecules. We tested here the hypothesis that bacteria have the ability to secrete proteins containing similar motifs to the intracellular TIR domains that are involved in the TIR-TIR interaction necessary for the subsequent signal transmission. Based upon their sequence homology, proteins expressing TIRs have been divided into three sub-classes, based around the TLRs, the TLR adapter proteins, and the interleukin-1 and -18 adapter proteins. The highly conserved regions from these separate sub-families were then used to identify similar bacterial proteins. The bacterial proteins identified were then included in an iterative MEME-BLAST process to broaden the search. Tollip, a known TLR antagonist and adapter protein, was included in this investigation although it does not fit into any of the three sub-classes outlined above. If suitable bacterial proteins had been identified, it would signify that certain bacteria had evolved a mechanism to aid them in avoiding detection by the innate immune system acting through the TIR domains. At this stage one has to conclude that there is no evidence currently available suggesting such a mechanism, when using the strategy applied here.  相似文献   

11.
Importin α1 can bind classical nuclear localization signals (NLSs) in two NLS-binding sites, known as "major" and "minor." The major site is located between ARM repeats 2-4, whereas the minor site spans ARM 7-8. In this study, we have characterized the cellular localization of human phospholipid scramblase 4 (hPLSCR4), a member of the phospholipid scramblase protein family. We identified a minimal NLS in hPLSCR4 ((273)GSIIRKWN(280)) that contains only two basic amino acids. This NLS is both necessary for nuclear localization of hPLSCR4 in transfected HeLa cells and sufficient for nuclear import of a non-diffusible cargo in permeabilized cells. Mutation of only one of the two basic residues, Arg(277), correlates with loss of nuclear localization, suggesting this amino acid plays a key role in nuclear transport. Crystallographic analysis of mammalian importin α1 in complex with the hPLSCR4-NLS reveals this minimal NLS binds specifically and exclusively to the minor binding site of importin α. These data provide the first structural and functional evidence of a novel NLS-binding mode in importin α1 that uses only the minor groove as the exclusive site for nuclear import of nonclassical cargos.  相似文献   

12.
Comparative modeling of the vitamin D receptor three-dimensional structure and computational docking of 1alpha,25-dihydroxyvitamin D(3) into the putative binding pocket of the two deletion mutant receptors: (207-423) and (120-422, Delta [164-207]) are reported and evaluated in the context of extensive mutagenic analysis and crystal structure of holo hVDR deletion protein published recently. The obtained molecular model agrees well with the experimentally determined structure. Six different conformers of 1alpha,25-dihydroxyvitamin D(3) were used to study flexible docking to the receptor. On the basis of values of conformational energy of various complexes and their consistency with functional activity, it appears that 1alpha,25-dihydroxyvitamin D(3) binds the receptor in its 6-s-trans form. The two lowest energy complexes obtained from docking the hormone into the deletion protein (207-423) differ in conformation of ring A and orientation of the ligand molecule in the VDR pocket. 1alpha,25-Dihydroxyvitamin D(3) possessing the A-ring conformation with axially oriented 1alpha-hydroxy group binds receptor with its 25-hydroxy substituent oriented toward the center of the receptor cavity, whereas ligand possessing equatorial conformation of 1alpha-hydroxy enters the pocket with A ring directed inward. The latter conformation and orientation of the ligand is consistent with the crystal structure of hVDR deletion mutant (118-425, Delta [165-215]). The lattice model of rVDR (120-422, Delta [164-207]) shows excellent agreement with the crystal structure of the hVDR mutant. The complex obtained from docking the hormone into the receptor has lower energy than complexes for which homology modeling was used. Thus, a simple model of vitamin D receptor with the first two helices deleted can be potentially useful for designing a general structure of ligand, whereas the advanced lattice model is suitable for examining binding sites in the pocket.  相似文献   

13.
14.
Reactive astrocytes are implicated in traumatic spinal cord injury (TSCI). Interestingly, naïve astrocytes can easily transform into neurotoxic reactive astrocytes (A1s) with inflammatory stimulation. Previous studies demonstrated that microRNA(miR)-21a-5p was up-regulated in spinal cord tissue after TSCI; however, it is not clear whether this affected reactive astrocyte polarization. Here, we aim to detect the effects of miR-21a-5p on the induction of A1 formation and the underlying mechanisms. Our study found that the expression of miR-21a-5p was significantly increased while that of Cntfr α was decreased, since naïve astrocytes transformed into A1s 3 days post-TSCI; the binding site between miR-21a-5p and Cntfr α was further confirmed in astrocytes. After treatment with CNTF, the levels of A1 markers decreased while that of A2 increased. The expression of A1 markers significantly decreased with the downregulation of miR-21a-5p, while Cntfr α siRNA treatment caused the opposite both in vitro and in vivo. To summarize, miR-21a-5p/Cntfr α promotes A1 induction and might enhance the inflammatory process of TSCI; furthermore, we identified, for the first time, the effect and potential mechanism by which CNTF inhibits naïve astrocytes transformation into A1s. Collectively, our findings demonstrate that targeting miR-21a-5p represents a prospective therapy for promoting the recovery of TSCI.  相似文献   

15.
16.
The substrate-like inhibition of serine proteinases by avian ovomucoid domains has provided an excellent model for protein inhibitor-proteinase interactions of the standard type. 1H,15N and 13C NMR studies have been undertaken on complexes formed between turkey ovomucoid third domain (OMTKY3)2 and chymotrypsin A(alpha) (Ctr) in order to characterize structural changes occurring in the Ctr binding site of OMTKY3. 15N and 13C were incorporated uniformly into OMTKY3, allowing backbone resonances to be assigned for OMTKY3 in both its free and complex states. Chemical shift perturbation mapping indicates that the two regions, K13-P22 and N33-A40, are the primary sites in OMTKY3 involved in Ctr binding, in full agreement with the 12 consensus proteinase-contact residues of OMTKY3 defined previously on the basis of X-ray crystallographic and mutational analysis. Smaller chemical shift perturbations in selected other regions may result from minor structural changes on binding. Through-bond 15N-13C correlations between P1-13C' and P1'-15N in two-dimensional H(N)CO and HN(CO) NMR spectra of selectively labeled OMTKY3 complexed with Ctr indicate that the scissile peptide bond between L18 and E19 of the inhibitor is intact in the complex. The chemical shifts of the reactive site peptide bond indicate that it is predominantly trigonal, although the data are not inconsistent with a slight perturbation of the hybridization of the peptide bond toward the first tetrahedral state along the reaction coordinate.  相似文献   

17.
Kasai Y  Watanabe M  Harada N 《Chirality》2003,15(4):295-299
A convenient method for determining the absolute configuration of chiral secondary alcohols using the racemic NMR anisotropy reagent, (+/-)-2-methoxy-2-(1-naphthyl)propionic acid [(+/-)-M(alpha)NP acid], and an HPLC-CD detector was developed. The method was successfully applied to some chiral alcohols derived from (-)-alpha-santonin.  相似文献   

18.
The unique 88 amino acid N-terminal region of cAMP-specific phosphodiesterase-4D5 (PDE4D5) contains overlapping binding sites conferring interaction with the signaling scaffold proteins, betaarrestin and RACK1. A 38-mer peptide, whose sequence reflected residues 12 through 49 of PDE4D5, encompasses the entire N-terminal RACK1 Interaction Domain (RAID1) together with a portion of the beta-arrestin binding site. (1)H NMR and CD analyses indicate that this region has propensity to form a helical structure. The leucine-rich hydrophobic grouping essential for RACK1 interaction forms a discrete hydrophobic ridge located along a single face of an amphipathic alpha-helix with Arg34 and Asn36, which also play important roles in RACK1 binding. The Asn22/Pro23/Trp24/Asn26 grouping, essential for RACK1 interaction, was located at the N-terminal head of the amphipathic helix that contained the hydrophobic ridge. RAID1 is thus provided by a distinct amphipathic helical structure. We suggest that the binding of PDE4D5 to the WD-repeat protein, RACK1, may occur in a manner akin to the helix-helix interaction shown for G(gamma) binding to the WD-repeat protein, G(beta). A more extensive section of the PDE4D5 N-terminal sequence (Thr11-Ala85) is involved in beta-arrestin binding. Several residues within the RAID1 helix contribute to this interaction however. We show here that these residues form a focused band around the centre of the RAID1 helix, generating a hydrophobic patch (from Leu29, Val30 and Leu33) flanked by polar/charged residues (Asn26, Glu27, Asp28, Arg34). The interaction with beta-arrestin exploits a greater circumference on the RAID1 helix, and involves two residues (Glu27, Asp28) that do not contribute to RACK1 binding. In contrast, the interaction of RACK1 with RAID1 is extended over a greater length of the helix and includes Leu37/Leu38, which do not contribute to beta-arrestin binding. A membrane-permeable, stearoylated Val12-Ser49 38-mer peptide disrupted the interaction of both beta-arrestin and RACK1 with endogenous PDE4D5 in HEKB2 cells, whilst a cognate peptide with a Glu27Ala substitution selectively failed to disrupt PDE4D5/RACK1 interaction. The stearoylated Val12-Ser49 38-mer peptide enhanced the isoprenaline-stimulated PKA phosphorylation of the beta(2)-adrenergic receptors (beta(2)AR) and its activation of ERK, whilst the Glu27Ala peptide was ineffective in both these regards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号