首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lycopene dispersed in aqueous solutions with different dissolved oxygen contents was photo-irradiated by using a xenon weather meter, and the contents of lycopene and dissolved oxygen were measured. Both the degradation of lycopene and the consumption of dissolved oxygen followed a first-order kinetics model. There was a proportional relationship between the degradation content of lycopene and the consumption of dissolved oxygen. These results indicate that dissolved oxygen would also be involved in the photolysis of lycopene.  相似文献   

2.
The effects of dissolved oxygen tension and mechanical forces on fungal morphology were both studied in the submerged fermentation of Aspergillus awamori. Pellet size, the hairy length of pellets, and the free filamentous mycelial fraction in the total biomass were found to be a function of the mechanical force intensity and to be independent of the dissolved oxygen tension provided that the dissolved oxygen tension was neither too low (5%) nor too high (330%). When the dissolved oxygen concentration was close to the saturation concentration corresponding to pure oxygen gas, A. awamori formed denser pellets and the free filamentous mycelial fraction was almost zero for a power input of about 1 W/kg. In the case of very low dissolved oxygen tension, the pellets were rather weak and fluffy so that they showed a very different appearance. The amount of biomass per pellet surface area appeared to be affected only by the dissolved oxygen tension and was proportional to the average dissolved oxygen tension to the power of 0.33. From this it was concluded that molecular diffusion was the dominant mechanism for oxygen transfer in the pellets and that convection and turbulent flow in the pellets were negligible in submerged fermentations. The biomass per wet pellet volume increased with the dissolved oxygen tension and decreased with the size of the pellets. This means that the smaller pellets formed under a higher dissolved oxygen tension had a higher intrinsic strength. Correspondingly, the porosity of the pellets was a function of the dissolved oxygen tension and the size of pellets. Within the studied range, the void fraction in the pellets was high and always much more than 50%.  相似文献   

3.
溶氧对L-缬氨酸发酵过程的影响   总被引:1,自引:0,他引:1  
目的:以黄色短杆菌XV0505为供试菌,探索溶氧对L-缬氨酸发酵过程的影响及其控制策略。方法:利用5L发酵罐,考察了不同溶氧浓度对L-缬氨酸发酵的影响,并采用代谢流分析对其结果进行阐述,提出分阶段溶氧控制策略。结果:采用分阶段溶氧控制策略,即在0~24h溶氧浓度为20%,24~60h溶氧浓度为5%,发酵60h,L-缬氨酸可达到58.36g/L,比5%和20%溶氧浓度下分别提高了18.95%和13.56%。结论:溶氧浓度对L-缬氨酸发酵有重要影响。  相似文献   

4.
Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.  相似文献   

5.
A proportional-integral control system was used to control dissolved oxygen in a fermentor at constant shear and mass transfer conditions. Growth and antibiotic production in Streptomyces clavuligerus were studied at different dissolved oxygen levels during the fermentation. Three protocols were employed: no-oxygen control to provide a base case, oxygen controlled to a preset saturation level throughout the fermentation, and oxygen controlled at a high level only during the growth phase. The last protocol was aimed at optimizing the consumption of oxygen. Lower specific growth rates and cephamycin C yields were obtained when dissolved oxygen was controlled at 50% throughout the fermentation, compared to the base case. A 2.4-fold increase in the final cephamycin yield was observed when dissolved oxygen was controlled at saturation levels during the growth phase, compared to the experiments without dissolved oxygen control. This enhancement in yield was independent of the dissolved oxygen (DO) level after exponential growth, in the range of 50-100% saturation. The most effective control strategy, therefore, was to control DO only during active growth when the biosynthetic enzymes were probably synthesized.  相似文献   

6.
溶氧对L-苏氨酸发酵的影响   总被引:1,自引:0,他引:1  
探索溶氧对L-苏氨酸发酵过程的影响及其控制方法。通过摇瓶装液量试验、不同溶氧控制方式考察发酵过程中溶氧对L-苏氨酸合成的影响。采用补料分批发酵工艺发酵L-苏氨酸,利用氨基酸分析仪测定发酵液中L-苏氨酸的产量,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。可以得出溶氧对L-苏氨酸生物合成有重要影响,并建立了最佳溶氧控制条件。  相似文献   

7.
杜珲  张小萍  曾波 《生态学报》2016,36(23):7562-7569
溶氧是水环境中一个重要的环境因子,为了探讨水中的溶氧含量水平是否会对陆生植物的耐淹能力造成影响,研究了陆生植物喜旱莲子草(Alternanthera philoxeroides)和牛鞭草(Hemarthria altissima)在遭受不同溶氧含量水体完全淹没后的生长表现、存活情况和非结构碳水化合物的变化。实验结果表明:(1)水体中的溶氧含量显著影响了处于完全水淹环境中的喜旱莲子草和牛鞭草的存活。受高溶氧水体完全水淹的喜旱莲子草和牛鞭草主茎的完好程度和存活叶的数量均显著高于遭受低溶氧水体完全水淹的喜旱莲子草和牛鞭草,喜旱莲子草和牛鞭草在高溶氧水体完全水淹后的生物量比低溶氧水体完全水淹后要高;(2)水体中的溶氧含量显著影响了处于完全水淹环境中的喜旱莲子草和牛鞭草的生长,受高溶氧水体完全水淹的喜旱莲子草主茎伸长生长和不定根生长显著强于受低溶氧水体完全水淹的喜旱莲子草,在不定根的生长上牛鞭草也具有同样的表现。(3)高溶氧水环境有利于减小被完全淹没的喜旱莲子草和牛鞭草的碳水化合物消耗,两种植物在受高溶氧完全水淹后体内具有的非结构性碳水化合物含量均比受低溶氧完全水淹后高。(4)喜旱莲子草比牛鞭草能更好地耐受完全水淹,当处于低溶氧完全水淹时表现得更为明显,本研究表明入侵物种喜旱莲子草比本地物种牛鞭草具有更强的环境适应能力和水淹耐受能力。  相似文献   

8.
The ammonia oxidation rate by sewage sludge was determined as a function of the dissolved oxygen tension. Samples of sludge were taken from a domestic waste water treatment pilot plant in which sludge was completely retained by membrane filtration. The samples were subcultured chemolithotrophically in recycling reactors. The gas supplied was a mixture of pure argon and oxygen. The K O2 for ammonia oxidation was estimated to be 0.97 (±0.16) kPa dissolved oxygen. Together with ammonia oxidation and oxygen consumption, dinitrogen gas was produced. So, aerobic denitrification occurred. At dissolved oxygen tensions of 1.25 kPa and higher, the dinitrogen production rate (per N-mole) equalled 20% of the ammonia oxidation rate. This proportion was even 58% at 0.3 kPa dissolved oxygen. At 0.15 kPa dissolved oxygen, however, nitrification hardly proceeded, while dinitrogen production soon stopped. Most likely, a nitrifier concomitantly oxidized ammonia and reduced nitrite to dinitrogen.  相似文献   

9.
透明颤菌血红蛋白基因在金色链霉菌中的克隆与表达   总被引:4,自引:0,他引:4  
分别用质粒pJJ699与pUC19(vhb),pIJ702与pBR322(vhb),构建大肠杆菌链霉菌穿梭质粒,将透明颤菌血红蛋白基因转入金色链霉菌。在低溶解氧浓度下,透明颤菌血红蛋白的表达,可提高金色链霉菌氧的利用效率,产物合成比原始菌株提高40%~60%。在局部低氧的环境中,采用四环素抗性基因启动子带动血红蛋白基因表达,可有效发挥透明颤菌血红蛋白的氧传递效率,优于透明颤菌血红蛋白基因受溶解氧调控的天然启动子。  相似文献   

10.
Many shallow lakes in north temperate zones experience reduced dissolved oxygen concentration under ice. However, some shallow lakes display supersaturated dissolved oxygen concentrations (>20 mg·L ? 1) in late winter under conditions of maximum ice thickness. During the winters of 1996, 1997, and 1999, we collected phytoplankton samples from Arrowwood Lake near Pingree, North Dakota to determine whether a specific alga was involved in dissolved oxygen supersaturation in this lake. Although dissolved oxygen supersaturation was not observed during this period, we did observe an increase in dissolved oxygen concentration that was associated with a phytoplankton bloom during late February and early March in both 1996 and 1997. In 1996, the bloom was composed of the dinoflagellate, Peridinium aciculiferum (Lemm.) Lemm. and several species of cryptomonads. A similar bloom of P. aciculiferum was followed by a bloom of several species of euglenoids in 1997. In contrast, P. aciculiferum was only a minor component of the winter phytoplankton, dissolved oxygen concentrations remained low, and no bloom event was observed in 1999. Statistical analyses indicated a significant relationship (rs = 0.57, P = 0.019) between dissolved oxygen levels and the density of the dinoflagellate, P. aciculiferum, but no significant relationship between dissolved oxygen levels and densities of other phytoplankton. These results suggest that the elevated levels of dissolved oxygen are associated with the dinoflagellate, P. aciculiferum. This bloom was most likely the result of an excystment event rather than a general growth response.  相似文献   

11.
综合养鱼高产池塘的溶氧变化周期   总被引:13,自引:1,他引:12  
根据1979—1984年对主养鲢、鳙、非鲫,主养青、草鱼,主养青鱼3种养殖结构类型高产鱼池溶氧变化周期的系统研究,揭示了高产养鱼池塘溶氧的昼夜、垂直、水平变化及季节变化周期,分析了光合作用、呼吸作用、扩散作用在高产养鱼池塘溶氧动力学上的地位和作用。对高产养鱼池塘的溶氧收入、支出及平衡情况进行了定量研究,在主要饲养季节,测得晴到多云天、晴天的溶氧来源分别为:浮游植物光合产氧占86.0和95.3%,大气扩散溶入占14.0和4.7%;氧的消耗分别为:“水呼吸”消耗氧占72.0和72.0%,鱼类呼吸消耗氧占22.0和13.1%,淤泥中生物呼吸消耗氧占2.9、5.5%,扩散逸出占3.1、8.8%。文中还对溶氧变化周期与养鱼池塘管理的环境控制、结构控制之间的关系进行了分析。    相似文献   

12.
The purpose of the present study was to ascertain the optimal concentration of dissolved oxygen in order to maximize the intracellular glucose oxidase formation in Aspergillus niger. Cultivations performed in a 3.5 l laboratory reactor showed that a dissolved oxygen concentration at 3% of saturation at a total pressure of 1.2 bar was optimal for maximizing intracellular glucose oxidase activity. Cultivations performed at higher dissolved oxygen concentrations did not produce as much glucose oxidase as those performed at 3%, although the formation rate was high. Experiments revealed that maximal intracellular glucose oxidase formation for the A. niger strain used, is accomplished by limiting the gluconic acid production rate by means of maintaining a low dissolved oxygen concentration. Several attempts to achieve higher intracellular glucose oxidase activity were also made by manipulating the glucose concentration at a 3% dissolved oxygen concentration. However, no enhancement in glucose oxidase activity was observed.  相似文献   

13.
The filamentous fungus Glarea lozoyensis produces a novel, pharmaceutically important pneumocandin (B(0)) that is used to synthesize a lipopeptide which demonstrates cidal activity against clinically relevant pathogens. A range of unwanted pneumocandin analogs are also produced by the organism. To maintain the unwanted impurities to acceptable levels upon scaleup, a good understanding of the impact of chemical and physical environment on the cell physiology is required, which benefits downstream processing. Pilot-scale studies were performed to determine the impact of dissolved oxygen, temperature, pH, and carbon dioxide on the process. Experiments included multiple fermenters (up to seven) at 0.07 and 0.8 m(3) scale using single source medium sterilization and inoculum. Gas blending was used to separate effects of dissolved oxygen from agitation. The process was significantly influenced by dissolved oxygen level. The critical dissolved oxygen tension (C(crit)) for growth was below 2% air saturation. The C(crit) for production of pneumocandin B(0) was 20% air saturation, with a significant reduction of the specific production rate below this value. In contrast, low dissolved oxygen levels produced a substantial increase of pneumocandins B(1), B(5), and E(0), while high dissolved oxygen levels produced a disproportionate increase of D(5). This sensivity to dissolved oxygen was independent of agitation within a power range of 2-15 kW/m(3). Broth viscosity was impacted below 10% dissolved oxygen, suggesting an effect on morphology. The process was shown to be sensitive to temperature but relatively insensitive to pH and carbon dioxide (in the exhaust gas) within the ranges studied. This scaledown analysis explained phenomena seen at pilot scale and helped define operating boundary conditions for successful scale up to 19 m(3).  相似文献   

14.
The growth of Saccharomyces carlsbergensis in continuous culture has been studied when dissolved oxygen and glucose concentrations were held constant at a series of steady-state levels. Both oxygen and glucose controlled the degree of aerobic metabolism and of ethanolic fermentation. When the glucose uptake rate was low (between 1.2 and 2.8 mmoles per hour per gram of yeast) the relative distribution of glucose between ethanolic and aerobic fermentation was sensitive to oxygen: when dissolved oxygen was near to saturation, glucose metabolism was 0.98 aerobic; when dissolved oxygen was 0.01 saturated, 0.8 of intake glucose metabolism was by ethanolic fermentation. On the other hand when glucose intake was high (between 7.6 and 18.2 mmoles) metabolism was predominately by ethanolic fermentation even when dissolved oxygen concentration was at saturation. The extent, to which catabolism proceeded by an anaerobic or aerobic pathway, as judged by ethanol production, was controlled more by the uptake of glucose than of oxygen.  相似文献   

15.
A promising chemical absorption–biological reduction integrated process has been proposed. A major problem of the process is oxidation of the active absorbent, ferrous ethylenediaminetetraacetate (Fe(II)EDTA), to the ferric species, leading to a significant decrease in NO removal efficiency. Thus the biological reduction of Fe(III)EDTA is vitally important for the continuous NO removal. Oxygen, an oxidizing agent and biological inhibitor, is typically present in the flue gas. It can significantly retard the application of the integrated process. This study investigated the influence mechanism of oxygen on the regeneration of Fe(II)EDTA in order to provide insight on how to eliminate or decrease the oxygen influence. The experimental results revealed that the dissolved oxygen and Fe(III)EDTA simultaneously served as electron acceptor for the microorganism. The Fe(III)EDTA reduction activity were directly inhibited by the dissolved oxygen. When the bioreactor was supplied with 3% and 8% oxygen in the gas phase, the concentration of initial dissolved oxygen in the liquid phase was 0.28 and 0.68 mg l−1. Correspondingly, the instinct Fe(III)EDTA reduction activity of the microorganism determined under anoxic condition in a rotation shaker decreased from 1.09 to 0.84 and 0.49 mM h−1. The oxidation of Fe(II)EDTA with dissolved oxygen prevented more dissolved oxygen access to the microorganism and eased the inhibition of dissolved oxygen on the microorganisms.  相似文献   

16.
Batch experiments were conducted to examine the effects of dissolved oxygen concentration on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by an enrichment culture of 2,4-D-utilizing bacteria. A modified Monod equation was found to describe the relationship between the specific growth rate and the concentrations of both the organic substrate and dissolved oxygen. Values for the maximum specific growth rate, yield, and Monod coefficient for growth on 2,4-D were 0.09 h-1, 0.14 g/g, and 0.6 mg/liter, respectively. The half-saturation constant for dissolved oxygen was estimated to be 1.2 mg/liter. These results suggest that dissolved oxygen concentrations below 1 mg/liter may be rate limiting for the biodegradation of chlorinated aromatic compounds such as 2,4-D, which have a requirement for molecular oxygen as a cosubstrate for metabolism.  相似文献   

17.
The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.  相似文献   

18.
Batch experiments were conducted to examine the effects of dissolved oxygen concentration on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by an enrichment culture of 2,4-D-utilizing bacteria. A modified Monod equation was found to describe the relationship between the specific growth rate and the concentrations of both the organic substrate and dissolved oxygen. Values for the maximum specific growth rate, yield, and Monod coefficient for growth on 2,4-D were 0.09 h-1, 0.14 g/g, and 0.6 mg/liter, respectively. The half-saturation constant for dissolved oxygen was estimated to be 1.2 mg/liter. These results suggest that dissolved oxygen concentrations below 1 mg/liter may be rate limiting for the biodegradation of chlorinated aromatic compounds such as 2,4-D, which have a requirement for molecular oxygen as a cosubstrate for metabolism.  相似文献   

19.
Biofilm‐related research using 96‐well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96‐well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96‐well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96‐well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model. Biotechnol. Bioeng. 2009;103: 1042–1047. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
The physiological activity of microorganisms in environments with low dissolved oxygen concentrations often differs from the metabolic activity of the same cells growing under fully aerobic or anaerobic conditions. This article describes a laboratory-scale system for the control of dissolved oxygen at low levels while maintaining other parameters, such as agitator speed, gas flowrate, position of sparger outlet, and temperature at fixed values. Thus, it is possible to attribute in dilute nonviscous fermentations all physiologic changes solely to changes in dissolved oxygen. Experiments were conducted with Azotobacter vinelandii and Escherichia coli. Critical oxygen concentrations for growth (that value of oxygen allowing growth at 97% of mu max) were measured as 0.35 +/- 0.03 mg/L for A. vinelandii and 0.12 +/- 0.03 mg/L for E. coli. These values are significantly different from the commonly quoted values for critical oxygen concentrations based on respiration rates. Because of the superior dissolved oxygen control system and an improved experimental protocol preventing CO2 limitation, we believe that the values reported in this work more closely represent reality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号