首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The target of rapamycin (TOR) is serine/threonine protein kinase that is highly conserved among eukaryotes and can be inactivated by the antibiotic rapamycin through the formation of a ternary complex composed of rapamycin and two proteins, TOR and FKBP12. Differing from fungi and animals, plant FKBP12 proteins are unable to form the ternary complex, and thus plant TORs are insensitive to rapamycin. This has led to a poor understanding of TOR functions in plants. As a first step toward the understanding of TOR function in a rapamycin-insensitive unicellular red alga, Cyanidioschyzon merolae, we constructed a rapamycin-susceptible strain in which the Saccharomyces cerevisiae FKBP12 protein (ScFKBP12) was expressed. Treatment with rapamycin resulted in growth inhibition and decreased polysome formation in this strain. Binding of ScFKBP12 with C. merolae TOR in the presence of rapamycin was demonstrated in vivo and in vitro by pull-down experiments. Moreover, in vitro kinase assay showed that inhibition of C. merolae TOR kinase activity was dependent on ScFKBP12 and rapamycin.  相似文献   

2.
To investigate the complexity of the endomembrane transport system in the early diverging eukaryote, Giardia lamblia, we characterized homologues of the GTP-binding proteins, Rab1 and Rab2, involved in regulating vesicular trafficking between the endoplasmic reticulum and Golgi in higher eukaryotes, and GDI, which plays a key role in the cycling of Rab proteins. G. lamblia Rab1, 2.1, and GDI sequences largely resemble yeast and mammalian homologues, are transcribed as 0.66-, 0.62-, and 1.4-kb messages, respectively, and are expressed during growth and encystation. Western analyses detected an abundant Rab/GDI complex at approximately 80 kDa, and free GDI (60 kDa) in both trophozoites and encysting cells. Immunoelectron microscopy with antibody to Rab1 localized Rab with ER, encystation secretory vesicles, and lysosome-like peripheral vesicles. GDI associated with these structures, and with small vesicles found throughout the cytoplasm, consistent with GDI's key role in Rab cycling between organelles within the cell.  相似文献   

3.
The intestinal pathogen Giardia lamblia possesses several unusual organelle features, including two equivalent nuclei, no mitochondria or peroxisomes, and a developmentally regulated rough endoplasmic reticulum and Golgi. Giardia also possesses a number of complex and unique cytoskeleton structures that dictate cell shape, motility and attachment. Our investigations of cytoskeletal proteins have revealed the presence of a new protein family. Proteins in this family contain both ankyrin repeats and coiled-coil domains; although these are common protein motifs, their pairing is unique, thus establishing a new class of head-stalk proteins. Examination of the G. lamblia genome shows evidence for at least 18 genes coding for proteins with a series of ankyrin repeats followed by a lengthy coiled-coil domain and at least an additional 14 genes coding for proteins with a prominent coiled-coil domain flanked by two series of ankyrin repeats. We have examined one of these proteins, Giardia Axoneme Associated Protein (GASP-180), in detail. GASP-180 is a 180 kDa protein containing five ankyrin repeats in a 200 amino acid N-terminal domain separated by a short spacer from an approximately 1375 amino acid coiled-coil domain. Using anti-peptide antibodies raised against a unique 20 amino acid sequence found at the C-terminus, we have determined that GASP-180 is present in cytoskeleton extractions of the parasite and localises to the proximal base of the anterior flagellar axonemes. The combination of the localisation and the structural and functional motifs of GASP-180 make it a strong candidate to participate in control of flagellar activity.  相似文献   

4.
To understand the functional roles of protein kinase A (PKA) during vegetative and differentiating states of Giardia parasites, we studied the structural and functional characteristics of the regulatory subunit of PKA (gPKAr) and its involvement in the giardial encystment process. Molecular cloning and characterisation showed that gPKAr contains two tandem 3'5'-cyclic adenosine monphosphate (cyclic AMP) binding domains at the C-terminal end and the interaction domain for the catalytic subunit. A number of consensus residues including in vivo phosphorylation site for PKAc and dimerisation/docking domain are present in gPKAr. The regulatory subunit physically interacts with the catalytic subunit and inhibits its kinase activity in the absence of cyclic AMP, which could be partially restored upon addition of cyclic AMP. Western blot analysis showed a marked reduction in the endogenous gPKAr concentration during differentiation of Giardia into cysts. An increased activity of gPKAc was also detected during encystation without any significant change in the protein concentration. Distinct localisations of gPKAc to the anterior flagella, basal bodies and caudal flagella as noted in trophozoites were absent in encysting cells at later stages. Instead, PKAc staining was punctate and located mostly to the cell periphery. Our study indicates possible enrichment of the active gPKAc during late stages of encystation, which may have implications in completion of the encystment process or priming of cysts for efficient excystation.  相似文献   

5.
Recently, a novel type of calcium-dependent protein kinase (CDPK) that requires neither calmodulin nor phospholipids for activation, has been described in plants. We have isolated a cDNA clone for carrot CDPK by probing a library of somatic embryo cDNAs with oligonucleotides corresponding to highly conserved regions of protein kinases. The product of this gene overexpressed in Escherichia coli reacted strongly with monoclonal antibodies to soybean CDPK. The deduced amino acid sequence of carrot CDPK reveals two major functional domains. An N-terminal catalytic domain with greatest homology to calcium/calmodulin-dependent protein kinase type II from rat brain is coupled to a C-terminal calcium-binding domain resembling calmodulin. These features of the primary sequence explain how CDPK binds calcium and suggest a model for CDPK regulation based on similarities to animal calcium/calmodulin-dependent protein kinases.  相似文献   

6.
A gene encoding for a citrus salt-stress-associated protein (Cit-SAP) was cloned from Citrus sinensis salt-treated cell suspension. The gene, designated csa, was isolated from a cDNA expression library. The partial amino acid sequence of the protein, as well as that deduced from the nucleotide sequence of csa, revealed a considerable homology to mammalian glutathione peroxidase (GP), and to clone 6P229 from tobacco protoplasts. The increased expression of Cit-SAP in NaCl-treated cultured citrus cells and in citrus plants irrigated with saline water, and its similarity to GP, raise the possibility that one of the effects of salt stress in plants may be the increase of the level of free radicals.  相似文献   

7.
8.
9.
Several calcium-dependent protein kinases (CDPKs) are located in plant plasma membranes where they phosphorylate enzymes and transporters, like the H+-ATPase and water channels, thereby regulating their activities. In order to determine which kinases phosphorylate the H+-ATPase, a calcium-dependent kinase was purified from beetroot (Beta vulgaris L.) plasma membranes by anion-exchange chromatography, centrifugation in glycerol gradients and hydrophobic interaction chromatography. The kinetic parameters of this kinase were determined (V max: 3.5 μmol mg−1 min−1, K m for ATP: 67 μM, K m for syntide 2: 15 μM). The kinase showed an optimum pH of 6.8 and a marked dependence on low-micromolar Ca2+ concentrations (K d : 0.77 μM). During the purification procedure, a 63-kDa protein with an isoelectric point of 4.7 was enriched. However, this protein was shown not to be a kinase by mass spectrometry. Kinase activity gels showed that a 50-kDa protein could be responsible for most of the activity in purified kinase preparations. This protein was confirmed to be a CDPK by mass spectrometry, possibly the red beet ortholog of rice CDPK2 and Arabidopsis thaliana CPK9, both found associated with membranes. This kinase was able to phosphorylate purified H+-ATPase in a Ca2+-dependent manner.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

10.
11.
The molecular events that regulate phagocytosis, an important innate immune response, in invertebrate defence cells (haemocytes) are poorly understood. Lymnaea stagnalis haemocytes were used as a model to elucidate the role of cell signalling pathways in phagocytosis by molluscan defence cells. The phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, significantly impaired haemocyte phagocytic activity in a dose-responsive manner with 10 microM LY294002 reducing internalization of fluorescent-conjugated Escherichia coli by 62% (P < or = 0.001). In contrast, the protein kinase A (PKA) inhibitor KT5720 was without effect. Therefore, PI3-K, but not PKA, appears to control phagocytosis by haemocytes in these gastropod molluscs.  相似文献   

12.
A newly identified gene in Escherichia coli, fkpA, encodes a protein with extensive similarity to the macrophage infectivity potentiator (Mip) proteins of Legionella pneumophila and Chlamydia trachomatis. The FkpA protein may be a new member of the family of FK506-binding proteins (FKBPs) because its carboxyl domain includes a sequence that matches the consensus FK506-binding motif in 40 of 48 positions. including those amino acids at the active site that form hydrogen bonds with the drug FK506. The amino acid sequence of the 29kDa FkpA protein is 30–35% identical to the Mip proteins of L. pneumophila, L. micdadei, and C. trachomatis. Of the 270 amino acids of FkpA, 113 (42%) are identical to the sequence of one or another of these Mip proteins. Overexpression of FkpA or deletion of fkpA from the E. coli chromosome had no detrimental effect on bacterial growth, indicating that fkpA is not an essential gene. Hybridization of fkpA-specific DNA probes to genomic blots révealed that similar genes exist in several representatives of the Enterobacteriaceae. Thus, mip-like genes are not found exelusively in bacteria having a predominately intracellular life style, but instead appear to be a new FKBP subfamily that is a common constituent of many bacteria.  相似文献   

13.
Turgeon B  Lang BF  Meloche S 《Genomics》2002,80(6):673-680
Extracellular signal-regulated kinase 3 (ERK3) is a distantly related member of the mitogen-activated protein (MAP) kinase family of serine/threonine kinases. Here, we report the characterization of the genomic loci encoding ERK3 in mice and humans. The mouse ERK3 gene (Mapk6) spans more than 20 kb and is split into six exons. Its structure is similar to that of the human MAPK6 gene, which extends over 40 kb. We also identified and characterized a mouse Mapk6 processed pseudogene. In humans, database analysis has revealed the presence of six MAPK6 processed pseudogenes localized on four different chromosomes. We further show that the structure of MAPK6 is closely related to that of the gene encoding the homologous protein kinase p63(MAPK) (MAPK4), suggesting that the two genes arose by duplication. Our analysis demonstrates that the ERK3 subfamily of MAP kinase genes is composed of two functional genes, MAPK6 and MAPK4, and several pseudogenes.  相似文献   

14.
Mitogen activated protein kinase cascades function in eukaryotic responses to the environment and stress. Trypanosomatid parasites possess protein kinases with sequences characteristic of kinases in such cascades. In this report we use gene knockouts to demonstrate that two mitogen activated kinase kinase genes, MKK1 (Tb927.3.4860) and MKK5 (Tb927.10.5270), are not essential in the pathogenic bloodstream stage of Trypanosoma brucei, either in vitro or in vivo. Bloodstream forms lacking MKK1 showed decreased growth at 39 °C as compared to the parental line. However, unlike its Leishmania orthologue, T. brucei MKK1 does not appear to play a significant role in flagellar biogenesis.  相似文献   

15.
16.
The cdc2 kinases are important cell cycle regulators in all eukaryotes. MAP kinases, a closely related family of protein kinases, are involved in cell cycle regulation in yeasts and vertebrates, but previously have not been documented in plants. We used PCR to amplify Brassica napus DNA sequences using primers corresponding to amino sequences that are common to all known protein kinases. One sequence was highly similar to KSS1, a MAP kinase from Saccharomyces cerevisiae. This sequence was used to isolate a full-length MAP kinase-like clone from a pea cDNA library. The pea clone, called D5, shared approximately 50% amino acid identity with MAP kinases from yeasts and vertebrates and about 41% identity with plant cdc2 kinases. An expression protein encoded by D5 was recognized by an antiserum specific to human MAP kinases (ERKs). Messenger RNA corresponding to D5 was present at similar levels in all tissues examined, without regard to whether cell division or elongation were occurring in those tissues.  相似文献   

17.
Summary The cdc2 + gene function plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. Recessive temperature-sensitive mutations in the cdc2 gene cause cell cycle arrest when shifted to the restrictive temperature, while a second class of mutations within the cdc2 gene causes a premature advancement into mitosis. Previously the cdc2 + gene has been cloned and has been shown to encode a 34 kDa phosphoprotein with in vitro protein kinase activity. Here we describe the cloning of 11 mutant alleles of the cdc2 gene using two simple methods, one of which is presented here for the first time. We have sequenced these alleles and find a variety of single amino acid substitutions mapping throughtout the cdc2 protein. Analysis of these mutations has identified a number of regions within the cdc2 protein that are important for cdc2 + activity and regulation. These include regions which may be involved in the interaction of the cdc2 + gene product with the proteins encoded by the wee1 +, cdc13 + and suc1 + genes.  相似文献   

18.
A full-length cDNA, LpNDPK, encoding ryegrass nucleoside diphosphate kinase (EC 2.7.4.6) has been cloned and sequenced. The nucleotide sequence of the clone contains an open reading frame of 450 nucleotides encoding a protein of 150 amino acid residues with a calculated molecular mass of 16.5 kDa and a Pi of 6.62. The LpNDPK encoded protein possesses substantial homology with nucleoside diphosphate kinases (NDPKs) isolated and cloned form other sources; the highest identity (86 percnt;) was observed with NDPK from sugarcane (Saccharum officinarum). Amino acid comparisons with other NDPKs show that the presented ryegrass NDPK sequence also contains several motifs and specific residues crucial for catalytic activity which are highly conserved among other NDPKs. RT-PCR expression analysis using primers covering the coding region of LpNDPK revealed that the ryegrass NDPK gene is equally expressed in stem, leaf, and flower tissue.  相似文献   

19.
Summary A novel protein kinase homologue (KNS1) has been identified in Saccharomyces cerevisiae. KNS1 contains an open reading frame of 720 codons. The carboxy-terminal portion of the predicted protein sequence is similar to that of many other protein kinases, exhibiting 36% identity to the cdc2 gene product of Schizosaccharomyces pombe and 34% identity to the CDC28 gene product of S. cerevisiae. Deletion mutations were constructed in the KNS1 gene. kns1 mutants grow at the same rate as wild-type cells using several different carbon sources. They mate at normal efficiencies, and they sporulate successfully. No defects were found in entry into or exit from stationary phase. Thus, the KNS1 gene is not essential for cell growth and a variety of other cellular processes in yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号