首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four novel U RNAs are encoded by a herpesvirus   总被引:23,自引:0,他引:23  
Marmoset T lymphocytes transformed by herpesvirus saimiri contain the first virally encoded U RNAs (called HSURs) to be identified. HSURs assemble into small nuclear ribonucleoproteins of low abundance (less than or equal to 2 x 10(4) copies/cell). They bind proteins with Sm determinants and acquire a 5' trimethylguanosine cap structure. The sequences of HSUR 1 (143 nucleotides), HSUR 2 (115 nucleotides), HSUR 3 (76 nucleotides), and HSUR 4 (106 nucleotides) are related to each other but are distinct from any previously characterized cellular U RNA. The viral genes encoding the HSURs possess conserved enhancer, promoter, and 3' end formation signals unique to U RNA genes. HSUR 1 and HSUR 2 have a similar 5' end sequence that exhibits perfect complementarity to the highly conserved AAUAAA polyadenylation signal. Oligonucleotide directed RNAase H degradation indicates that this 5' end region is available for base pairing interactions within the HSUR 1 and HSUR 2 snRNP particles.  相似文献   

2.
3.
4.
Anti-La sera from patients with autoimmune disorders precipitate a set of nuclear and cytoplasmic small RNA-protein complexes. Up to now, it has been thought that the La antigen is associated only with RNAs transcribed by RNA polymerase III, including precursors of tRNA and 5 S ribosomal RNA. Here we report that anti-La sera also react with ribonucleoprotein particles containing small nuclear RNA U1, which is transcribed by RNA polymerase II. Anti-La sera from 12 out of 12 patients tested were found to precipitate U1 RNA-protein complexes from HeLa cell nuclear extracts, under conditions where nonimmune sera do not. Ribonucleoprotein particles containing a second small nuclear RNA, U2, do not react appreciably with anti-La sera although they are present in HeLa cell nuclei at the same concentration as U1 RNA. Anti-La sera also react with U1 RNA-protein complexes in mouse and frog cells, but not in Drosophila or Chironomus, two organisms which lack the La antigen. Hybridization of cloned U1 DNA with anti-La-reactive RNA from HeLa cell nuclear extracts reveals mature U1 RNA, whereas anti-La-reactive cytoplasmic RNA contains a series of hybridizing bands that represent molecules 1-7 nucleotides longer than U1 and which may include precursors of nuclear U1 RNA (Madore, S. J., Wieben, E. D., and Pederson, T. (1984) J. Cell Biol., 188-192). Pulse-chase experiments suggest that the association of La antigenicity with these cytoplasmic U1 RNA molecules is transient. These results are discussed in relation to the presence of uridylate-rich sequences in the 3' termini of U1 RNA precursors and mature U1 RNA, which are similar to La antigen binding sites in several RNAs transcribed by RNA polymerase III.  相似文献   

5.
Analysis of a 5,549-base-pair sequence at the left end of herpesvirus saimiri unique (L-) DNA revealed two open reading frames and genes for five small nuclear U RNAs (herpesvirus saimiri U RNAs). Replication-competent deletion mutants were constructed in order to assess the importance of these genetic features for transformation by this oncogenic herpesvirus. Although not required for replication, one of the open reading frames was found to be required for immortalization of marmoset T lymphocytes into continuously growing cell lines. The protein predicted by this reading frame (STP; saimiri transformation-associated protein) has a highly hydrophobic stretch of 26 amino acids sufficient for a membrane-spanning domain near its carboxy terminus; this domain is immediately preceded by a sequence appropriate for formation of a metal-binding domain (His X2 His X6 Cys X2 Cys, where Xs are other amino acids). One of two poly(A)+ RNAs that could encode STP is bicistronic, while the other has a long 5' untranslated region (approximately 1.5 kilobases). Although some analogies can be drawn between STP and LMP (lymphocyte membrane protein) of Epstein-Barr virus, STP is not related in sequence to LMP.  相似文献   

6.
We describe a novel approach to identify RNA-protein cross-linking sites within native small nuclear ribonucleoprotein (snRNP) particles from HeLa cells. It combines immunoprecipitation of the UV-irradiated particles under semi-denaturing conditions with primer extension analysis of the cross-linked RNA moiety. In a feasibility study, we initially identified the exact cross-linking sites of the U1 70-kDa (70K) protein in stem-loop I of U1 small nuclear RNA (snRNA) within purified U1 snRNPs and then confirmed the results by a large-scale preparation that allowed N-terminal sequencing and matrix-assisted laser desorption ionization mass spectrometry of purified cross-linked peptide-oligonucleotide complexes. We identified Tyr(112) and Leu(175) within the RNA-binding domain of the U1 70K protein to be cross-linked to G(28) and U(30) in stem-loop I, respectively. We further applied our immunoprecipitation approach to HeLa U5 snRNP, as part of purified 25 S U4/U6.U5 tri-snRNPs. Cross-linking sites between the U5-specific 220-kDa protein (human homologue of Prp8p) and the U5 snRNA were located at multiple nucleotides within the highly conserved loop 1 and at one site in internal loop 1 of U5 snRNA. The cross-linking of four adjacent nucleotides indicates an extended interaction surface between loop 1 and the 220-kDa protein. In summary, our approach provides a rapid method for identification of RNA-protein contact sites within native snRNP particles as well as other ribonucleoprotein particles.  相似文献   

7.
8.
Herpesvirus ateles is a gamma-2-herpesvirus which naturally infects spider monkeys (Ateles spp.) and causes malignant lymphoproliferative disorders in various other New World primates. The genomic sequence of herpesvirus ateles strain 73 revealed a close relationship to herpesvirus saimiri, with a high degree of variability within the left terminus of the coding region. A spliced mRNA transcribed from this region was detected in New World monkey T-cell lines transformed by herpesvirus ateles in vitro or derived from T cells of infected Saguinus oedipus. The encoded viral protein, termed Tio, shows restricted homology to the oncoprotein StpC and to the tyrosine kinase-interacting protein Tip, two gene products responsible for the T-cell-transforming and oncogenic phenotype of herpesvirus saimiri group C strains. Tio was detectable in lysates of the transformed T lymphocytes. Dimer formation was observed after expression of recombinant Tio. After cotransfection, Tio was phosphorylated in vivo by the protein tyrosine kinases Lck and Src and less efficiently by Fyn. Stable complexes of these Src family kinases with the viral protein were detected in lysates of the transfected cells. Binding analyses indicated a direct interaction of Tio with the SH3 domains of Lyn, Hck, Lck, Src, Fyn, and Yes. In addition, tyrosine-phosphorylated Tio bound to the SH2 domains of Lck, Src, or Fyn. Thus, herpesvirus ateles-encoded Tio may contribute to viral T-cell transformation by influencing the function of Src family kinases.  相似文献   

9.
The small nuclear RNAs U4 and U6 display extensive sequence complementarity and co-exist in a single ribonucleoprotein particle. We have investigated intermolecular base-pairing between both RNAs by psoralen cross-linking, with emphasis on the native U4/U6 ribonucleoprotein complex. A mixture of small nuclear ribonucleoproteins U1 to U6 from HeLa cells, purified under non-denaturing conditions by immune affinity chromatography with antibodies specific for the trimethylguanosine cap of the small nuclear RNAs was treated with aminomethyltrioxsalen. A psoralen cross-linked U4/U6 RNA complex could be detected in denaturing polyacrylamide gels. Following digestion of the cross-linked U4/U6 RNA complex with ribonuclease T1, two-dimensional diagonal electrophoresis in denaturing polyacrylamide gels was used to isolate cross-linked fragments. These fragments were analysed by chemical sequencing methods and their positions identified within RNAs U4 and U6. Two overlapping fragments of U4 RNA, spanning positions 52 to 65, were cross-linked to one fragment of U6 RNA (positions 51 to 59). These fragments show complementarity over a contiguous stretch of eight nucleotides. From these results, we conclude that in the native U4/U6 ribonucleoprotein particle, both RNAs are base-paired via these complementary regions. The small nuclear RNAs U4 and U6 became cross-linked in the deproteinized U4/U6 RNA complex also, provided that small nuclear ribonucleoproteins were phenolized at 0 degree C. When the phenolization was performed at 65 degrees C, no cross-linking could be detected upon reincubation of the dissociated RNAs at lower temperature. These results indicate that proteins are not required to stabilize the mutual interactions between both RNAs, once they exist. They further suggest, however, that proteins may well be needed for exposing the complementary RNA regions for proper intermolecular base-pairing in the course of the assembly of the U4/U6 RNP complex from isolated RNAs. Our results are discussed also in terms of the different secondary structures that the small nuclear RNAs U4 and U6 may adopt in the U4/U6 ribonucleoprotein particle as opposed to the isolated RNAs.  相似文献   

10.
Precursors of U4 small nuclear RNA   总被引:16,自引:1,他引:15       下载免费PDF全文
《The Journal of cell biology》1984,99(3):1140-1144
The processing and ribonucleoprotein assembly of U4 small nuclear RNA has been investigated in HeLa cells. After a 45-min pulse label with [3H]uridine, a set of apparently cytoplasmic RNAs was observed migrating just behind the gel electrophoretic position of mature U4 RNA. These molecules were estimated to be one to at least seven nucleotides longer than mature U4 RNA. They reacted with Sm autoimmune patient sera and a monoclonal Sm antibody, indicating their association with proteins characteristic of small nuclear ribonucleoprotein complexes. The same set of RNAs was identified by hybrid selection of pulse-labeled RNA with cloned U4 DNA, confirming that these are U4 RNA sequences. No larger nuclear precursors of these RNAs were detected. Pulse-chase experiments revealed a progressive decrease in the radioactivity of the U4 precursor RNAs coincident with an accumulation of labeled mature U4 RNA, confirming a precursor-product relationship.  相似文献   

11.
Damianov A  Kann M  Lane WS  Bindereif A 《Biological chemistry》2006,387(10-11):1455-1460
The biogenesis of spliceosomal small nuclear RNAs (snRNAs) involves organized translocations between the cytoplasm and certain nuclear domains, such as Cajal bodies and nucleoli. Here we identify human RBM28 protein as a novel snRNP component, based on affinity selection of U6 small nuclear ribonucleoprotein (snRNP). As shown by immunofluorescence, RBM28 is a nucleolar protein. Anti-RBM28 immunoprecipitation from HeLa cell lysates revealed that this protein specifically associates with U1, U2, U4, U5, and U6 snRNAs. Our data provide the first evidence that RBM28 is a common nucleolar component of the spliceosomal ribonucleoprotein complexes, possibly coordinating their transition through the nucleolus.  相似文献   

12.
The protein encoded by herpesvirus saimiri transforming gene STP-C488 was identified and characterized. Antibodies were produced in rabbits by immunization with keyhole limpet hemocyanin-conjugated synthetic peptides specific for the predicted sequence of STP-C488. STP-C488-encoded protein was detected in recombinant Escherichia coli, transformed Rat-1 cells, transfected COS-1 cells, and in common marmoset T lymphocytes immortalized by herpesvirus saimiri strain 488. STP-C488 protein was sensitive to treatment by bacterial collagenase, consistent with the 18 uninterrupted collagenlike repeats predicted by the DNA sequence. The apparent molecular size of STP-C488 in sodium dodecyl sulfate (SDS)-polyacrylamide gels (20 to 22 kDa) was considerably larger than that predicted from the DNA sequence (9.9 kDa). Using indirect immunofluorescence tests and subcellular fractionation, STP-C488 was found to be membrane bound, primarily in perinuclear compartments. The 18 uninterrupted collagenlike repeats, sensitivity to collagenase, location in the cell, and anomalous migration through SDS-polyacrylamide gels suggest an unusual, membrane-associated, fibrous structure for this transforming herpesvirus oncoprotein.  相似文献   

13.
Three novel functional variants of human U5 small nuclear RNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
We have identified and characterized three new variants of U5 small nuclear RNA (snRNA) from HeLa cells, called U5D, U5E, and U5F. Each variant has a 2,2,7-trimethylguanosine cap and is packaged into an Sm-precipitable small nuclear ribonucleoprotein (snRNP) particle. All retain the evolutionarily invariant 9-base loop at the top of stem 1; however, numerous base changes relative to the abundant forms of U5 snRNA are present in other regions of the RNAs, including a loop that is part of the yeast U5 minimal domain required for viability and has been shown to bind a protein in HeLa extracts. U5E and U5F each constitute 7% of the total U5 population in HeLa cells and are slightly longer than the previously characterized human U5 (A, B, and C) species. U5D, which composes 5% of HeLa cell U5 snRNAs, is present in two forms: a full-length species, U5DL, and a shorter species, U5DS, which is truncated by 15 nucleotides at its 3' end and therefore resembles the short form of U5 (snR7S) in Saccharomyces cerevisiae. We have established conditions that allow specific detection of the individual U5 variants by either Northern blotting (RNA blotting) or primer extension; likewise, U5E and U5F can be specifically and completely degraded in splicing extracts by oligonucleotide-directed RNase H cleavage. All variant U5 snRNAs are assembled into functional particles, as indicated by their immunoprecipitability with anti-(U5) RNP antibodies, their incorporation into the U4/U5/U6 tri-snRNP complex, and their presence in affinity-purified spliceosomes. The higher abundance of these U5 variants in 293 cells compared with that in HeLa cells suggests possible roles in alternative splicing.  相似文献   

14.
15.
The biosynthesis of U1, U2, U4 and U5 spliceosomal small nuclear RNAs (snRNAs) involves the nuclear export of precursor molecules extended at their 3' ends, followed by a cytoplasmic phase during which the pre-snRNAs assemble into ribonucleoprotein particles and undergo hypermethylation of their 5' caps and 3' end processing prior to nuclear import. Previous studies have demonstrated that the assembly of pre-snRNAs into ribonucleoprotein particles containing the Sm core proteins is essential for nuclear import in mammalian cells but that 5' cap hypermethylation is not. In the present investigation we have asked whether or not 3' end processing is required for nuclear import of U2 RNA. We designed human pre-U2 RNAs that carried modified 3' tails, and identified one that was stalled (or greatly slowed) in 3' end processing, leading to its accumulation in the cytoplasm of human cells. Nonetheless, this 3' processing arrested pre-U2 RNA molecule was found to undergo cytoplasmic assembly into Sm protein-containing complexes to the same extent as normal pre-U2 RNA. The Sm protein-associated, unprocessed mutant pre-U2 RNA was not observed in the nuclear fraction. Using an assay based on suppression of a genetically blocked SV40 pre-mRNA splicing pathway, we found that the 3' processing deficient U2 RNA was significantly reduced in its ability to rescue splicing, consistent with its impaired nuclear import.  相似文献   

16.
17.
Primary and secondary structure of U8 small nuclear RNA   总被引:20,自引:0,他引:20  
U8 small nuclear RNA is a new, capped, 140 nucleotides long RNA species found in Novikoff hepatoma cells. Its sequence is: m3GpppAmUmCGUCAGGA GGUUAAUCCU UACCUGUCCC UCCUUUCGGA GGGCAGAUAG AAAAUGAUGA UUGGAGCUUG CAUGAUCUGC UGAUUAUAGC AUUUCCGUGU AAUCAGGACC UGACAACAUC CUGAUUGCUU CUAUCUGAUUOH. This RNA is present in approximately 25,000 copies/cell, and it is enriched in nucleolar preparations. Like U1, U2, U4/U6, and U5 RNAs, U8 RNA was also present as a ribonucleoprotein associated with the Sm antigen. The rat U8 RNA was highly homologous (greater than 90%) to a recently characterized 5.4 S RNA from mouse cells infected with spleen focus-forming virus (Kato, N., and Harada, F. (1984) Biochim. Biophys. Acta, 782, 127-131). In addition to the U8 RNA, three other U small nuclear RNAs were found in anti-Sm antibody immunoprecipitates from labeled rat and HeLa cells. Each of these contained a m3GpppAm cap structure; their apparent chain lengths were 60, 130, and 65 nucleotides. These U small nuclear RNAs are designated U7, U9, and U10 RNAs, respectively.  相似文献   

18.
Components essential for nuclear pre-messenger RNA splicing have been partially purified from HeLa cell nuclear extracts by chromatography on DEAE-Sepharose, heparin-Sepharose, Mono Q, and Mono S. We have obtained six fractions which, when combined, efficiently splice a synthetic adenovirus 2 major late RNA substrate in vitro. All fractions contain components that support the formation of splicing intermediates (the cleaved 5' exon and the intron-exon 2 lariat). At least one of the fractions also contains an activity that is essential for the second step in the splicing reaction, namely cleavage at the 3' splice site and exon ligation. Two of the fractions are enriched in the major small nuclear ribonucleoprotein particles U1, U2, U4/U6, and U5. They participate in the formation of the splicing complexes which precedes the cleavage and ligation reactions. The remaining four fractions appear to contain protein factors, as suggested by their resistance to micrococcal nuclease.  相似文献   

19.
N Hernandez  W Keller 《Cell》1983,35(1):89-99
  相似文献   

20.
Assembly of splicing precursor RNAs into ribonucleoprotein particle (RNP) complexes during incubation in in vitro splicing extracts was monitored by a new system of RNP gel electrophoresis. The temporal pattern of assembly observed by our system was identical to that obtained by other gel and gradient methodologies. In contrast to the results obtained by other systems, however, we observed requirements of U1 small nuclear RNPs (snRNPs) and 5' splice junction sequences for formation of specific complexes and retention of U1 snRNPs within gel-fractionated complexes. Single-intron substrate RNAs rapidly assembled into slow-migrating complexes. The first specific complex (A) appeared within a minute of incubation and required ATP, 5' and 3' precursor RNA consensus sequences, and intact U1 and U2 RNAs for formation. A second complex (B) containing precursor RNA appeared after 15 min of incubation. Lariat-exon 2 and exon 1 intermediates first appeared in this complex, operationally defining it as the active spliceosome. U4 RNA was required for appearance of complex B. Released lariat first appeared in a complex of intermediate mobility (A') and subsequently in rapidly migrating diffuse complexes. Ligated product RNA was observed only in fast-migrating complexes. U1 snRNPs were detected as components of gel-isolated complexes. Radiolabeled RNA within the A and B complexes was immunoprecipitated by U1-specific antibodies under gel-loading conditions and from gel-isolated complexes. Therefore, the RNP antigen remained associated with assembled complexes during gel electrophoresis. In addition, 5' splice junction sequences within gel-isolated A and B complexes were inaccessible to RNase H cleavage in the presence of a complementary oligonucleotide. Therefore, nuclear factors that bind 5' splice junctions also remained associated with 5' splice junctions under our gel conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号