首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.

Background

Monocyte activation and tissue infiltration are quantitatively associated with high-salt intake induced target organ inflammation. We hypothesized that high-salt challenge would induce the expansion of CD14++CD16+ monocytes, one of the three monocyte subsets with a pro-inflammatory phenotype, that is associated with target organ inflammation in humans.

Methodology/Principal Findings

A dietary intervention study was performed in 20 healthy volunteers, starting with a 3-day usual diet and followed with a 7-day high-salt diet (≥15 g NaCl/day), and a 7-day low-salt diet (≤5 g NaCl/day). The amounts of three monocyte subsets (“classical” CD14++CD16-, “intermediate” CD14++CD16+ and “non-classical” CD14+CD16++) and their associations with monocyte-platelet aggregates (MPAs) were measured by flow cytometry. Blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) was used to evaluate renal hypoxia. Switching to a high-salt diet resulted in CD14++ monocyte activation and a rapid expansion of CD14++CD16+ subset and MPAs, with a reciprocal decrease in the percentages of CD14++CD16- and CD14+CD16++ subsets. In vitro study using purified CD14++ monocytes revealed that elevation in extracellular [Na+] could lead to CD14++CD16+ expansion via a ROS dependent manner. In addition, high-salt intake was associated with progressive hypoxia in the renal medulla (increased R2* signal) and enhanced urinary monocyte chemoattractant protein-1 (MCP-1) excretion, indicating a temporal and spatial correlation between CD14++CD16+ subset and renal inflammation. The above changes could be completely reversed by a low-salt diet, whereas blood pressure levels remained unchanged during dietary intervention.

Conclusions/Significance

The present work demonstrates that short-term increases in dietary salt intake could induce the expansion of CD14++CD16+ monocytes, as well as an elevation of MPAs, which might be the underlying cellular basis of high-salt induced end organ inflammation and potential thromboembolic risk. In addition, this process seems largely unrelated to changes in blood pressure levels. This finding provides novel links between dietary salt intake, innate immunity and end organ inflammation.  相似文献   

2.
3.
Chronic inflammation in older individuals is thought to contribute to inflammatory, age‐related diseases. Human monocytes are comprised of three subsets (classical, intermediate and nonclassical subsets), and despite being critical regulators of inflammation, the effect of age on the functionality of monocyte subsets remains to be fully defined. In a cross‐sectional study involving 91 healthy male (aged 20–84 years, median 52.4) and 55 female (aged 20–82 years, median 48.3) individuals, we found age was associated with an increased proportion of intermediate and nonclassical monocytes (P = 0.002 and 0.04, respectively) and altered phenotype of specific monocyte subsets (e.g. increased expression of CD11b and decreased expression of CD38, CD62L and CD115). Plasma levels of the innate immune activation markers CXCL10, neopterin (P < 0.001 for both) and sCD163 (P = 0.003) were significantly increased with age. Whilst similar age‐related changes were observed in both sexes, monocytes from women were phenotypically different to men [e.g. lower proportion of nonclassical monocytes (P = 0.002) and higher CD115 and CD62L but lower CD38 expression] and women exhibited higher levels of CXCL10 (P = 0.012) and sCD163 (P < 0.001) but lower sCD14 levels (P < 0.001). Monocytes from older individuals exhibit impaired phagocytosis (P < 0.05) but contain shortened telomeres (P < 0.001) and significantly higher intracellular levels of TNF both at baseline and following TLR4 stimulation (P < 0.05 for both), suggesting a dysregulation of monocyte function in the aged. These data show that aging is associated with chronic innate immune activation and significant changes in monocyte function, which may have implications for the development of age‐related diseases.  相似文献   

4.
Alterations in DNA methylation and gene expression in blood leukocytes are potential biomarkers of harm and mediators of the deleterious effects of tobacco exposure. However, methodological issues, including the use of self-reported smoking status and mixed cell types have made previously identified alterations in DNA methylation and gene expression difficult to interpret. In this study, we examined associations of tobacco exposure with DNA methylation and gene expression, utilizing a biomarker of tobacco exposure (urine cotinine) and CD14+ purified monocyte samples from 934 participants of the community-based Multi-Ethnic Study of Atherosclerosis (MESA). Urine cotinine levels were measured using an immunoassay. DNA methylation and gene expression were measured with microarrays. Multivariate linear regression was used to test for associations adjusting for age, sex, race/ethnicity, education, and study site. Urine cotinine levels were associated with methylation of 176 CpGs [false discovery rate (FDR)<0.01]. Four CpGs not previously identified by studies of non-purified blood samples nominally replicated (P value<0.05) with plasma cotinine-associated methylation in 128 independent monocyte samples. Urine cotinine levels associated with expression of 12 genes (FDR<0.01), including increased expression of P2RY6 (Beta ± standard error = 0.078 ± 0.008, P = 1.99 × 10?22), a gene previously identified to be involved in the release of pro-inflammatory cytokines. No cotinine-associated (FDR<0.01) methylation profiles significantly (FDR<0.01) correlated with cotinine-associated (FDR<0.01) gene expression profiles. In conclusion, our findings i) identify potential monocyte-specific smoking-associated methylation patterns and ii) suggest that alterations in methylation may not be a main mechanism regulating gene expression in monocytes in response to cigarette smoking.  相似文献   

5.
CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (P = 0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16− monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16− monocytes (P = 0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16− subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16− monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in HIV-infected individuals.  相似文献   

6.
7.
We have conducted the first study to determine the diagnostic potential of the CD14++CD16+ intermediate monocytes as compared to the pro-angiogenic subset of CD14++CD16+TIE2+ TIE2-expressing monocytes (TEMs) in cancer. These monocyte populations were investigated by flow cytometry in healthy volunteers (N?=?32) and in colorectal carcinoma patients with localized (N?=?24) or metastatic (N?=?37) disease. We further determined blood levels of cytokines associated with monocyte regulation. The results revealed the intermediate monocyte subset to be significantly elevated in colorectal cancer patients and to show the highest frequencies in localized disease. Multivariate regression analysis identified intermediate monocytes as a significant independent variable in cancer prediction. With a cut-off value at 0.37% (intermediate monocytes of total leukocytes) the diagnostic sensitivity and specificity ranged at 69% and 81%, respectively. In contrast, TEM levels were elevated in localized cancer but did not differ significantly between groups and none of the cytokines correlated with monocyte subpopulations. Of interest, in vitro analyses supported the observation that intermediate monocytes were more potently induced by primary as opposed to metastatic cancer cells which may relate to the immunosuppressive milieu established in the advanced stage of metastatic disease. In conclusion, intermediate monocytes as compared to TIE2-expressing monocytes are a more sensitive diagnostic indicator of colorectal cancer.  相似文献   

8.
李红东  洪贵妮  郭政 《遗传》2015,37(2):165-173
机体老化与癌症、神经退行性疾病等许多复杂疾病相关。目前,研究者已在外周全血中识别了大量的与老化相关的DNA甲基化标记,这些标记可能反映外周血白细胞在机体老化过程中发生的变化,也可能反映外周血中与年龄相关的细胞构成比例的变化。文章利用3组正常个体外周全血DNA甲基化谱,采用Spearman秩相关分析识别了与老化相关的CpG甲基化位点(age-related DNA methylation CpG sites, arCpGs)并评价了其可重复性;利用去卷积算法估计了各外周血样本中髓性和淋巴性细胞的比例并分析了其与年龄的相关性;比较了在外周全血、CD4+T细胞和CD14+单核细胞中识别的arCpGs的一致性。结果显示,在独立外周全血数据中识别的arCpGs具有显著的可重复性(超几何检验,P=1.65×10-11)。外周血髓性和淋巴性细胞的比例分别与年龄显著正、负相关(Spearman秩相关检验,P<0.05,r≤0.22),它们间DNA甲基化水平差异较大的CpG位点倾向于在外周全血中被识别为arCpGs。在CD4+T细胞中识别的arCpGs与在外周全血中识别的arCpGs显著交叠(超几何检验,P=6.14×10-12),且99.1%的交叠位点在CD4+T细胞及外周全血中的DNA甲基化水平与年龄的正、负相关性一致。尽管在CD14+单核细胞中识别的arCpGs与在外周全血中识别的arCpGs并不显著交叠,但是在交叠的51个arCpGs中,有90.1%的位点在CD14+单核细胞、外周全血以及CD4+T细胞中的DNA甲基化水平与年龄的正、负相关性一致,提示它们可能主要反映细胞间共同的改变。在外周全血中识别的arCpGs主要反映某些白细胞共同或特异的DNA甲基化改变,但是也有一部分反映外周血细胞比例构成的变化。  相似文献   

9.
10.
Q fever endocarditis, a severe complication of Q fever, is associated with a defective immune response, the mechanisms of which are poorly understood. We hypothesized that Q fever immune deficiency is related to altered distribution and activation of circulating monocyte subsets. Monocyte subsets were analyzed by flow cytometry in peripheral blood mononuclear cells from patients with Q fever endocarditis and controls. The proportion of classical monocytes (CD14+CD16 monocytes) was similar in patients and controls. In contrast, the patients with Q fever endocarditis exhibited a decrease in the non-classical and intermediate subsets of monocytes (CD16+ monocytes). The altered distribution of monocyte subsets in Q fever endocarditis was associated with changes in their activation profile. Indeed, the expression of HLA-DR, a canonical activation molecule, and PD-1, a co-inhibitory molecule, was increased in intermediate monocytes. This profile was not restricted to CD16+ monocytes because CD4+ T cells also overexpressed PD-1. The mechanism leading to the overexpression of PD-1 did not require the LPS from C. burnetii but involved interleukin-10, an immunosuppressive cytokine. Indeed, the incubation of control monocytes with interleukin-10 led to a higher expression of PD-1 and neutralizing interleukin-10 prevented C. burnetii-stimulated PD-1 expression. Taken together, these results show that the immune suppression of Q fever endocarditis involves a cross-talk between monocytes and CD4+ T cells expressing PD-1. The expression of PD-1 may be useful to assess chronic immune alterations in Q fever endocarditis.  相似文献   

11.
The cell adhesion molecule CD146 is normally located at the endothelial cell-to-cell junction and colocalizes with actin cytoskeleton. The soluble form of CD146 (sCD146) has been identified in the endothelial cell supernatant and in normal human plasma, and is increased in pathologic conditions with altered endothelial function. Soluble CD146 binding to monocytes promotes their transendothelial migration, which represents a central step in the development of atherosclerotic plaque. Since peripheral blood monocytes are characterized by a phenotypic and functional heterogeneity, with different transendothelial migration capacity, we hypothesized that monocyte subsets differently bind sCD146. Based on surface CD14 and CD16 expression monocytes were distinguished by flow cytometry (FACS) into three subsets: CD14++/CD16−, CD14++/CD16+ and CD14+/CD16+. CD16+ monocytes have been found to possess higher transendothelial migration ability. FACS analysis on blood monocytes from 30 healthy subjects revealed that higher percentages of CD14++/CD16+ (median, first and third quartile: 2.26, 1.62–3.87) and of CD14+/CD16+ (2.59, 1.28–4.80) were positive for CD146 (both p < 0.01), in comparison to CD14++/CD16− (0.66, 0.47–1.01). Moreover, in vitro treatment of ficoll separated monocytes with recombinant CD146 showed that both CD16+ subsets increased their percentage of CD146-positive events compared to CD16− monocytes (p < 0.01). Soluble CD146 levels were evaluated by ELISA in plasma samples of subjects from our study group and showed a correlation with percentage of CD146-positive CD14+/CD16+ monocyte subset. In this work we have demonstrated that monocyte subsets behave differently with regard to their sCD146 binding activity; because binding of CD146 influences transendothelial migration of monocytes, modulation of monocyte-CD146 interaction may represent a potential target to limit atherosclerotic plaque development.  相似文献   

12.
DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X‐chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Aging is associated with a progressive loss of the CD28 costimulatory molecule in CD4+ lymphocytes (CD28null T cells), which is accompanied by the acquisition of new biological and functional properties that give rise to an impaired immune response. The regulatory mechanisms that govern the appearance and function of this cell subset during aging and in several associated inflammatory disorders remain controversial. Here, we present the whole‐genome DNA methylation and gene expression profiles of CD28null T cells and its CD28+ counterpart. A comparative analysis revealed that 296 genes are differentially methylated between the two cell subsets. A total of 160 genes associated with cytotoxicity (e.g. GRZB, TYROBP, and RUNX3) and cytokine/chemokine signaling (e.g. CX3CR1, CD27, and IL‐1R) are demethylated in CD28null T cells, while 136 de novo‐methylated genes matched defects in the TCR signaling pathway (e.g. ITK, TXK, CD3G, and LCK). TCR‐landscape analysis confirmed that CD28null T cells have an oligo/monoclonal expansion over the polyclonal background of CD28+ T cells, but feature a Vβ family repertoire specific to each individual. We reported that CD28null T cells show a preactivation state characterized by a higher level of expression of inflammasome‐related genes that leads to the release of IL‐1β when activated. Overall, our results demonstrate that CD28null T cells have a unique DNA methylation landscape, which is associated with differences in gene expression, contributing to the functionality of these cells. Understanding these epigenetic regulatory mechanisms could suggest novel therapeutic strategies to prevent the accumulation and activation of these cells during aging.  相似文献   

14.

Objective

Atherosclerosis is considered to be an inflammatory disease in which monocytes and monocyte-derived macrophages play a key role. Circulating monocytes can be divided into three distinct subtypes, namely in classical monocytes (CM; CD14++CD16-), intermediate monocytes (IM; CD14++CD16+) and non-classical monocytes (NCM; CD14+CD16++). Low density lipoprotein particles are heterogeneous in size and density, with small, dense LDL (sdLDL) crucially implicated in atherogenesis. The aim of this study was to examine whether monocyte subsets are associated with sdLDL serum levels.

Methods

We included 90 patients with angiographically documented stable coronary artery disease and determined monocyte subtypes by flow cytometry. sdLDL was measured by an electrophoresis method on polyacrylamide gel.

Results

Patients with sdLDL levels in the highest tertile (sdLDL≥4mg/dL;T3) showed the highest levels of pro-inflammatory NCM (15.2±7% vs. 11.4±6% and 10.9±4%, respectively; p<0.01) when compared with patients in the middle (sdLDL=2-3mg/dL;T2) and lowest tertile (sdLDL=0-1mg/dL;T1). Furthermore, patients in the highest sdLDL tertile showed lower CM levels than patients in the middle and lowest tertile (79.2±8% vs. 83.9±7% and 82.7±5%; p<0.01 for T3 vs. T2+T1). Levels of IM were not related to sdLDL levels (5.6±4% vs. 4.6±3% vs. 6.4±3% for T3, T2 and T1, respectively). In contrast to monocyte subset distribution, levels of circulating pro- and anti-inflammatory markers were not associated with sdLDL levels.

Conclusion

The atherogenic lipoprotein fraction sdLDL is associated with an increase of NCM and a decrease of CM. This could be a new link between lipid metabolism dysregulation, innate immunity and atherosclerosis.  相似文献   

15.
Monocytes function as crucial innate effectors in the pathogenesis of chronic inflammatory diseases, including autoimmunity, as well as in the inflammatory response against infectious pathogens. Human monocytes are heterogeneous and can be classified into three distinct subsets based on CD14 and CD16 expression. Although accumulating evidence suggests distinct functions of monocyte subsets in inflammatory conditions, their pathogenic roles in autoimmune diseases remain unclear. Thus, we investigated the phenotypic and functional characteristics of monocytes derived from synovial fluid and peripheral blood in RA patients in order to explore the pathogenic roles of these cells. In RA patients, CD14+CD16+, but not CD14dimCD16+, monocytes are predominantly expanded in synovial fluid and, to a lesser degree, in peripheral blood. Expression of co-signaling molecules of the B7 family, specifically CD80 and CD276, was markedly elevated on synovial monocytes, while peripheral monocytes of RA and healthy controls did not express these molecules without stimulation. To explore how synovial monocytes might gain these unique properties in the inflammatory milieu of the synovial fluid, peripheral monocytes were exposed to various stimuli. CD16 expression on CD14+ monocytes was clearly induced by TGF-β, although co-treatment with IL-1β, TNF-α, or IL-6 did not result in any additive effects. In contrast, TLR stimulation with LPS or zymosan significantly downregulated CD16 expression such that the CD14+CD16+ monocyte subset could not be identified. Furthermore, treatment of monocytes with IFN-γ resulted in the induction of CD80 and HLA-DR expression even in the presence of TGF-β. An in vitro assay clearly showed that synovial monocytes possess the unique capability to promote Th1 as well as Th17 responses of autologous peripheral CD4 memory T cells. Our findings suggest that the cytokine milieu of the synovial fluid shapes the unique features of synovial monocytes as well as their cardinal role in shaping inflammatory T-cell responses in RA.  相似文献   

16.
17.
18.

Objective

The uremic toxin Indoxyl-3-sulphate (IS), a ligand of Aryl hydrocarbon Receptor (AhR), raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs) have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD) than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation.

Methods

Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed.

Results

IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2) and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1), via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression.

Conclusion

IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.  相似文献   

19.
《Epigenetics》2013,8(12):1570-1576
Supplementation of fish oil rich in omega-3 polyunsaturated fatty acids (n-3 PUFA) during pregnancy has been shown to confer favorable health outcomes in the offspring. In a randomized controlled trial, we have previously shown that n-3 PUFA supplementation in pregnancy was associated with modified immune responses and some markers of immune maturation. However, the molecular mechanisms underlying these heritable effects are unclear. To determine whether the biological effects of maternal n-3 PUFA supplementation are mediated through DNA methylation, we analyzed CD4+ T-cells purified from cryo-banked cord blood samples from a previously conducted clinical trial. Of the 80 mother-infant pairs that completed the initial trial, cord blood samples of 70 neonates were available for genome-wide DNA methylation profiling. Comparison of purified total CD4+ T-cell DNA methylation profiles between the supplement and control groups did not reveal any statistically significant differences in CpG methylation, at the single-CpG or regional level. Effect sizes among top-ranked probes were lower than 5% and did not warrant further validation. Tests for association between methylation levels and key n-3 PUFA parameters, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), or total n-3 PUFAs were suggestive of dose-dependent effects, but these did not reach genome-wide significance. Our analysis of the microarray data did not suggest strong modifying effects of in utero n-3 PUFA exposure on CD4+ T-cell methylation profiles, and no probes on the array met our criteria for further validation. Other epigenetic mechanisms may be more relevant mediators of functional effects induced by n-3 PUFA in early life.  相似文献   

20.

Background and Purpose

The most common strategy for treating patients with acute ischemic stroke is thrombolytic therapy, though only a few patients receive benefits because of the narrow time window. Inflammation occurring in the central nervous system (CNS) in association with ischemia is caused by immune cells including monocytes and involved in lesion expansion. If the specific roles of monocyte subsets in stroke can be revealed, they may become an effective target for new treatment strategies.

Methods

We performed immunological examinations of 36 consecutive ischemic stroke patients within 2 days of onset and compared the results with 24 age-matched patients with degenerative disorders. The stroke patients were repeatedly tested for the proportions of monocyte subsets in blood, and serum levels of pro- and anti-inflammatory cytokines immediately after admission, on days 3-7 and 12-16 after stroke onset, and on the day of discharge. In addition, immunological measurements were analyzed for relationships to stroke subtypes and complications, including progressive infarction (PI) and stroke-associated infection (SAI).

Results

Monocyte count was significantly increased from 0–16 days after stroke as compared to the controls (p<0.05). CD14highCD16- classical and CD14highCD16+ intermediate monocytes were significantly increased from 0-7 and 3-16 days after stroke, respectively (p<0.05), whereas CD14 dimCD16high non-classical monocytes were decreased from 0–7 days (p<0.05). Cardioembolic infarction was associated with a persistent increase in intermediate monocytes. Furthermore, intermediate monocytes were significantly increased in patients with PI (p<0.05), while non-classical monocytes were decreased in those with SAI (p<0.05). IL-17A levels were positively correlated with monocyte count (r=0.485, p=0.012) as well as the percentage of non-classical monocytes (r=0.423, p=0.028), and negatively with that of classical monocytes (r=-0.51, p=0.007) during days 12-16.

Conclusions

Our findings suggest that CD14highCD16+ intermediate monocytes have a role in CNS tissue damage during acute and subacute phases in ischemic stroke especially in relation to cardioembolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号