首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precursor B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent pediatric cancer. DNA methylation and changes in the microRNAs (miRNAs) expression are known to be important causes of B-ALL. Decitabine as a DNA methyltransferase inhibitor agent is able to induce hypomethylation in several tumor suppressor genes. Much evidence has proven BTG2, PPP1CA, and PTEN act as tumor suppressor genes in many malignancies. In this case control study, the messenger RNA (mRNA) expression of PPP1CA, BTG2, and PTEN genes using quantitative real-time polymerase chain reaction (rRT-PCR) in Nalm6 cell line and five patients suffer from ALL with mean age 5.6 years were determined in compare with seven normal healthy donors age and sex matched. qRT-PCR analysis revealed that the expression levels of PPP1CA, BTG2, and PTEN genes were significantly decreased in Nalm6 ([FC] = 0.46, [FC] = 0.046, [FC] = 0.54) and according to the Methylation-specific PCR (MSP) analysis, these genes were hypermethylated in Nalm6. In next step, the effects of decitabine treatment on the methylation and expression of these genes in association with changes in miR-125b, miR-17, and miR-181b expression levels were evaluated in optimal concentration 2.5 µM of decitabine. Our data showed that decitabine is able to restore the expression levels of aforementioned genes and downregulate expression levels of oncomiRs; including miR-125b, miR-17, and miR-181b in Nalm6 cell line. Therefore, it seems that decitabine can be used as a potential drug for the first line treatment of patients with B-ALL, but further in vivo investigation is necessary.  相似文献   

2.

Background

Allergic airway diseases (AADs) such as asthma are characterized in part by granulocytic airway inflammation. The gene regulatory networks that govern granulocyte recruitment are poorly understood, but evidence is accruing that microRNAs (miRNAs) play an important role. To identify miRNAs that may underlie AADs, we used two complementary approaches that leveraged the genotypic and phenotypic diversity of the Collaborative Cross (CC) mouse population. In the first approach, we sought to identify miRNA expression quantitative trait loci (eQTL) that overlap QTL for AAD-related phenotypes. Specifically, CC founder strains and incipient lines of the CC were sensitized and challenged with house dust mite allergen followed by measurement of granulocyte recruitment to the lung. Total lung RNA was isolated and miRNA was measured using arrays for CC founders and qRT-PCR for incipient CC lines.

Results

Among CC founders, 92 miRNAs were differentially expressed. We measured the expression of 40 of the most highly expressed of these 92 miRNAs in the incipient lines of the CC and identified 18 eQTL corresponding to 14 different miRNAs. Surprisingly, half of these eQTL were distal to the corresponding miRNAs, and even on different chromosomes. One of the largest-effect local miRNA eQTL was for miR-342-3p, for which we identified putative causal variants by bioinformatic analysis of the effects of single nucleotide polymorphisms on RNA structure. None of the miRNA eQTL co-localized with QTL for eosinophil or neutrophil recruitment. In the second approach, we constructed putative miRNA/mRNA regulatory networks and identified three miRNAs (miR-497, miR-351 and miR-31) as candidate master regulators of genes associated with neutrophil recruitment. Analysis of a dataset from human keratinocytes transfected with a miR-31 inhibitor revealed two target genes in common with miR-31 targets correlated with neutrophils, namely Oxsr1 and Nsf.

Conclusions

miRNA expression in the allergically inflamed murine lung is regulated by genetic loci that are smaller in effect size compared to mRNA eQTL and often act in trans. Thus our results indicate that the genetic architecture of miRNA expression is different from mRNA expression. We identified three miRNAs, miR-497, miR-351 and miR-31, that are candidate master regulators of genes associated with neutrophil recruitment. Because miR-31 is expressed in airway epithelia and is predicted to target genes with known links to neutrophilic inflammation, we suggest that miR-31 is a potentially novel regulator of airway inflammation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1732-9) contains supplementary material, which is available to authorized users.  相似文献   

3.
While several microRNAs (miRNAs) have been proposed to act as tumor suppressors, a consensual definition of tumor suppressing miRNAs is still missing. Similarly to coding genes, we propose that tumor suppressor miRNAs must show evidence of genetic or epigenetic inactivation in cancers, and exhibit an anti-tumorigenic (e.g., anti-proliferative) activity under endogenous expression levels. Here we observe that this definition excludes the most extensively studied tumor suppressor candidate miRNA, miR-34a. In analyzable cancer types, miR-34a does not appear to be down-regulated in primary tumors relatively to normal adjacent tissues. Deletion of miR-34a is occasionally found in human cancers, but it does not seem to be driven by an anti-tumorigenic activity of the miRNA, since it is not observed upon smaller, miR-34a-specific alterations. Its anti-proliferative action was observed upon large, supra-physiological transfection of synthetic miR-34a in cultured cells, and our data indicates that endogenous miR-34a levels do not have such an effect. Our results therefore argue against a general tumor suppressive function for miR-34a, providing an explanation to the lack of efficiency of synthetic miR-34a administration against solid tumors.  相似文献   

4.
《Epigenetics》2013,8(1):161-172
Epigenetic dysregulation contributes to the high cardiovascular disease burden in chronic kidney disease (CKD) patients. Although microRNAs (miRNAs) are central epigenetic regulators, which substantially affect the development and progression of cardiovascular disease (CVD), no data on miRNA dysregulation in CKD-associated CVD are available until now. We now performed high-throughput miRNA sequencing of peripheral blood mononuclear cells from ten clinically stable hemodialysis (HD) patients and ten healthy controls, which allowed us to identify 182 differentially expressed miRNAs (e.g., miR-21, miR-26b, miR-146b, miR-155). To test biological relevance, we aimed to connect miRNA dysregulation to differential gene expression. Genome-wide gene expression profiling by MACE (Massive Analysis of cDNA Ends) identified 80 genes to be differentially expressed between HD patients and controls, which could be linked to cardiovascular disease (e.g., KLF6, DUSP6, KLF4), to infection / immune disease (e.g., ZFP36, SOCS3, JUND), and to distinct proatherogenic pathways such as the Toll-like receptor signaling pathway (e.g., IL1B, MYD88, TICAM2), the MAPK signaling pathway (e.g., DUSP1, FOS, HSPA1A), and the chemokine signaling pathway (e.g., RHOA, PAK1, CXCL5). Formal interaction network analysis proved biological relevance of miRNA dysregulation, as 68 differentially expressed miRNAs could be connected to 47 reciprocally expressed target genes. Our study is the first comprehensive miRNA analysis in CKD that links dysregulated miRNA expression with differential expression of genes connected to inflammation and CVD. After recent animal data suggested that targeting miRNAs is beneficial in experimental CVD, our data may now spur further research in the field of CKD-associated human CVD.  相似文献   

5.
《Epigenetics》2013,8(10):1189-1197
Carcinogenesis of the stomach involves multiple steps including genetic mutation or epigenetic alteration of tumor suppressor genes or oncogenes. Recently, tumor suppressive miRNAs have been shown to be deregulated by aberrant hypermethylation during gastric cancer progression. In this study, we demonstrate that three independent genetic loci encoding for miR-9 (miR-9-1, miR-9-2 and miR-9-3) are simultaneously modified by DNA methylation in gastric cancer cells. Methylation-mediated silencing of these three miR-9 genes can be reactivated in gastric cancer cells through 5-Aza-dC treatment. Subsequent analysis of the expression levels of miR-9 showed that it was significantly down-regulated in gastric cancers compared with adjacent normal tissues (P value < 0.005). A similar tendency toward a tumor-specific DNA methylation pattern was shown for miR-9-1, miR-9-2 and miR-9-3 in 72 primary human gastric cancer specimens. Ectopic expression of miR-9 inhibited cell proliferation, migration and invasion, suggesting its tumor suppressive potential in gastric cancer progression.  相似文献   

6.
Non-small-cell lung cancer (NSCLC) is an extremely debilitating respiratory malignancy. However, the pathogenesis of NSCLC has not been fully clarified. The main objective of our study was to identify potential microRNAs (miRNAs) and their regulatory mechanism in NSCLC. Using a systematic review, two NSCLC-associated miRNA data sets (GSE102286 and GSE56036) were obtained from Gene Expression Omnibus, and the differentially expressed miRNAs (DE-miRNAs) were accessed by GEO2R. Survival analysis of candidate DE-miRNAs was conducted using the Kaplan-Meier plotter database. To further illustrate the roles of DE-miRNAs in NSCLC, their potential target genes were predicted by miRNet and were annotated by the Database for Annotation, Visualization and Integrated Discovery (DAVID) program. Moreover, the protein-protein interaction (PPI) and miRNA-hub gene regulatory network were established using the STRING database and Cytoscape software. The function of DE-miRNAs in NSCLC cells was evaluated by transwell assay. Compared with normal tissues, a total of eight DE-miRNAs was commonly changed in two data sets. The survival analysis showed that six miRNAs (miR-21-5p, miR-31-5p, miR-708-5p, miR-30a-5p, miR-451a, and miR-126-3p) were significantly correlated with overall survival. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that target genes of upregulated miRNAs were enriched in pathways in cancer, microRNAs in cancer and proteoglycans in cancer, while the target genes of downregulated miRNAs were mainly associated with pathways in cancer, the PI3K-Akt signaling pathway and HTLV-I infection. Based on the miRNA-hub gene network and expression analysis, PTEN, EGFR, STAT3, RHOA, VEGFA, TP53, CTNNB1, and KRAS were identified as potential target genes. Furthermore, all six miRNAs exhibited significant effects on NSCLC cell invasion. These findings indicate that six DE-miRNAs and their target genes may play important roles in the pathogenesis of NSCLC, which will provide novel information for NSCLC treatments.  相似文献   

7.
miRNAs are small non-coding RNAs of ~24 nt that can block mRNA translation and/or negatively regulate its stability. There is a large body of evidence that dysregulation of miRNAs is a hallmark of cancer. miRNAs are often aberrantly expressed and their function is linked to the regulation of oncogenes and/or tumor suppressor genes involved in cell signaling pathway. miR-221 and miR-222 are two highly homologous microRNAs, whose upregulation has been recently described in several types of human tumors. miR-221/222 have been considered to act as oncogenes or tumor suppressors, depending on tumor system. Silencing oncomiRs or gene therapy approaches, based on re-expression of miRNAs that are down-regulated in cancer cells, could represent a novel anti-tumor approach for integrated cancer therapy. Here we will review the role of miR-221/222 in cancer progression and their use as prognostic and therapeutic tools in cancer.  相似文献   

8.
9.
10.
microRNAs (miRNAs) are small non-coding RNAs that regulate cellular processes by fine-tuning the levels of their target mRNAs. However, the regulatory elements determining cellular miRNA levels are not well studied. Previously, we had described an altered miRNA signature in the skeletal muscle of db/db mice. Here, we sought to explore the role of epigenetic mechanisms in altering these miRNAs. We show that histone deacetylase (HDAC) protein levels and activity are upregulated in the skeletal muscle of diabetic mice. In C2C12 cells, HDAC inhibition using suberoylanilide hydroxamic acid (SAHA) altered the levels of 24 miRNAs: 15 were downregulated and 9 were upregulated. miR-449a, an intronic miRNA localized within the Cdc20b gene, while being downregulated in the skeletal muscle of diabetic mice, was the most highly upregulated during HDAC inhibition. The host gene, Cdc20b, was also significantly upregulated during HDAC inhibition. Bioinformatics analyses identified a common promoter for both Cdc20b and miR-449a that harbors significant histone acetylation marks, suggesting the possibility of regulation by histone acetylation-deacetylation. These observations suggest an inverse correlation between miR-449a levels and HDAC activity, in both SAHA-treated skeletal muscle cells and db/db mice skeletal muscle. Further, in SAHA-treated C2C12 cells, we observed augmented occupancy of acetylated histones on the Cdc20b/miR-449a promoter, which possibly promotes their upregulation. In vivo injection of SAHA to db/db mice significantly restored skeletal muscle miR-449a levels. Our results provide insights into the potential regulatory role of epigenetic histone acetylation of the miR-449a promoter that may regulate its expression in the diabetic skeletal muscle.  相似文献   

11.
12.
Lung cancer is the leading cause of cancer death worldwide, and brain metastasis is a major cause of morbidity and mortality in lung cancer. CDH2 (N-cadherin, a mesenchymal marker of the epithelial-mesenchymal transition) and ADAM9 (a type I transmembrane protein) are related to lung cancer brain metastasis; however, it is unclear how they interact to mediate this metastasis. Because microRNAs regulate many biological functions and disease processes (e.g., cancer) by down-regulating their target genes, microRNA microarrays were used to identify ADAM9-regulated miRNAs that target CDH2 in aggressive lung cancer cells. Luciferase assays and western blot analysis showed that CDH2 is a target gene of miR-218. MiR-218 was generated from pri-mir-218-1, which is located in SLIT2, in non-invasive lung adenocarcinoma cells, whereas its expression was inhibited in aggressive lung adenocarcinoma. The down-regulation of ADAM9 up-regulated SLIT2 and miR-218, thus down-regulating CDH2 expression. This study revealed that ADAM9 activates CDH2 through the release of miR-218 inhibition on CDH2 in lung adenocarcinoma.  相似文献   

13.
14.
《Epigenetics》2013,8(11):1230-1237
Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.  相似文献   

15.
Cytarabine and daunorubicin are old drugs commonly used in the treatment of acute myeloid leukaemia (AML). Refractory or relapsed disease because of chemotherapy resistance is a major issue. microRNAs (miRNAs) were incriminated in resistance. This study aimed to identify miRNAs involved in chemoresistance in AML patients and to define their target genes. We focused on cytogenetically normal AML patients with wild-type NPM1 without FLT3-ITD as the treatment of this subset of patients with intermediate-risk cytogenetics is not well established. We analysed baseline AML samples by small RNA sequencing and compared the profile of chemoresistant to chemosensitive AML patients. Among the miRNAs significantly overexpressed in chemoresistant patients, we revealed miR-15a-5p and miR-21-5p as miRNAs with a major role in chemoresistance in AML. We showed that miR-15a-5p and miR-21-5p overexpression decreased apoptosis induced by cytarabine and/or daunorubicin. PDCD4, ARL2 and BTG2 genes were found to be targeted by miR-15a-5p, as well as PDCD4 and BTG2 by miR-21-5p. Inhibition experiments of the three target genes reproduced the functional effect of both miRNAs on chemosensitivity. Our study demonstrates that miR-15a-5p and miR-21-5p are overexpressed in a subgroup of chemoresistant AML patients. Both miRNAs induce chemoresistance by targeting three pro-apoptotic genes PDCD4, ARL2 and BTG2.  相似文献   

16.

Background

The contribution of aberrant DNA methylation in silencing of tumor suppressor genes (TSGs) and microRNAs has been investigated. Since these epigenetic alterations are reversible, it became of interest to determine the effects of the 5-aza-2′-deoxycytidine (DAC) demethylation therapy in breast cancer at different molecular levels.

Methods and Findings

Here we investigate a synoptic model to predict complete DAC treatment effects at the level of genes, microRNAs and proteins for several human breast cancer lines. The present study assessed an effective treatment dosage based on the cell viability, cytotoxicity, apoptosis and methylation assays for the investigated cell lines. A highly aggressive and a non-aggressive cell line were investigated using omics approaches such as MALDI-TOF MS, mRNA- and microRNA expression arrays, 2-D gel electrophoresis and LC-MS-MS. Complete molecular profiles including the biological interaction and possible early and late systematic stable or transient effects of the methylation inhibition were determined. Beside the activation of several epigenetically suppressed TSGs, we also showed significant dysregulation of some important oncogenes, oncomiRs and oncosuppressors miRNAs as well as drug tolerance genes/miRNAs/proteins.

Conclusions

In the present study, the results denote some new molecular DAC targets and pathways based on the chemical modification of DNA methylation in breast cancer. The outlined approach might prove to be useful as an epigenetic treatment model also for other human solid tumors in the management of cancer patients.  相似文献   

17.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

18.
19.
Serum microRNAs (miRNAs) have become a highlighted research hotspot, especially for their great potential as a novel promising non-invasive biomarker in cancer diagnosis. The most frequently used approach for serum miRNAs detection is quantitative real time polymerase chain reaction (qPCR). In order to obtain reliable qPCR data of miRNAs expression, the use of reference genes as endogenous control is undoubtly necessary. However, no systematic evaluation and validation of reference genes for normalizing qPCR analysis of serum miRNAs has been reported in colorectal adenocarcinoma. We firstly profiled pooled serum of colorectal adenocarcinoma, colorectal adenoma and healthy controls and selected a list of 13 miRNAs as candidate reference genes. U6 snRNA (U6) and above-mentioned 13 miRNAs were included in further confirmation by qPCR. As a result, 5 miRNAs (miR-151a-3p, miR-4446-3p, miR-221-3p, miR-93-5p and miR-3184-3p) were not detected in all samples and 2 miRNAs (miR-197-3p and miR-26a-5p) were relatively low with median Cq more than 35, and were excluded from further stability analysis. Then variable stability of other 6 miRNAs (miR-103b, miR-484, miR-16-5p, miR-3615, miR-18a-3p and miR-191-5p) and U6 were evaluated using two algorithms: geNorm and NormFinder which both identified miR-191-5p as the most stably expressed reference gene and selected miR-191-5p and U6 as the most stable pair of reference genes. After validating in an independent large cohorts and selecting miR-92a-3p as target miRNA to evaluate the effect of reference gene, we propose that combination of miR-191-5p and U6 could be used as reference genes for serum microRNAs qPCR data in colorectal adenocarcinoma, colorectal adenoma and healthy controls.  相似文献   

20.
MicroRNAs play important regulatory roles in eukaryotic lineages. In this paper, we employed deep sequencing technology to sequence and identify microRNAs in M. incognita genome, which is one of the important plant parasitic nematodes. We identified 102 M. incognita microRNA genes, which can be grouped into 71 nonredundant miRNAs based on mature sequences. Among the 71 miRANs, 27 are known miRNAs and 44 are novel miRNAs. We identified seven miRNA clusters in M. incognita genome. Four of the seven clusters, miR-100/let-7, miR-71-1/miR-2a-1, miR-71-2/miR-2a-2 and miR-279/miR-2b are conserved in other species. We validated the expressions of 5 M. incognita microRNAs, including 3 known microRNAs (miR-71, miR-100b and let-7) and 2 novel microRNAs (NOVEL-1 and NOVEL-2), using RT-PCR. We can detect all 5 microRNAs. The expression levels of four microRNAs obtained using RT-PCR were consistent with those obtained by high-throughput sequencing except for those of let-7. We also examined how M. incognita miRNAs are conserved in four other nematodes species: C. elegans, A. suum, B. malayi and P. pacificus. We found that four microRNAs, miR-100, miR-92, miR-279 and miR-137, exist only in genomes of parasitic nematodes, but do not exist in the genomes of the free living nematode C. elegans. Our research created a unique resource for the research of plant parasitic nematodes. The candidate microRNAs could help elucidate the genomic structure, gene regulation, evolutionary processes, and developmental features of plant parasitic nematodes and nematode-plant interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号