首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conjugate hydrocyanation of 17-acetylgona-11-carbomethoxy-1,3,5(10),13(17)-tetraenes using diethylaluminum cyanide (Nagata reaction) is reported. This methodology has allowed the introduction of an angular cyano group at the C-13 position of the steroid skeleton. Subsequent reduction of the nitrile group yielded various functionalized steroids. One of them, 22 bears the natural trans/anti/trans stereochemistry and possesses an hydroxyl and aminomethyl functionalities in the positions 11beta and 13beta, respectively. The characteristic (1)H and (13)C NMR spectroscopic features of the synthesized steroids are reported.  相似文献   

2.
The female reproductive system plays a major role in regulating the acquisition and loss of bone by the skeleton from menarche through senescence. Onset of gonadal sex steroid secretion at puberty is the major factor responsible for skeletal longitudinal and radial growth, as well as significant gain in bone density, until peak bone density is achieved in third decade of life. Gonadal sex steroids then help maintain peak bone density until menopause, including during the transient changes in skeletal mineral content associated with pregnancy and lactation. At menopause, decreased gonadal sex steroid production normally leads to rapid bone loss. The most rapid bone loss associated with decreased estrogen levels occurs in the first 8-10 years after menopause, with slower age-related bone loss occurring during later life. Age-related bone loss in women after the early menopausal phase of bone loss is caused by ongoing gonadal sex steroid deficiency, vitamin D deficiency, and secondary hyperparathyroidism. Other factors also contribute to age-related bone loss, including intrinsic defects in osteoblast function, impairment of the GH/IGF axis, reduced peak bone mass, age-associated sarcopenia, and various sporadic secondary causes. Further understanding of the relative contributions of the female reproductive system and each of the other factors to development and maintenance of the female skeleton, bone loss, and fracture risk will lead to improved approaches for prevention and treatment of osteoporosis.  相似文献   

3.
Vertebrate skeletal differentiation retains elements from simpler phyla, and reflects the differentiation of supporting tissues programmed by primary embryonic development. This developmental scheme is driven by homeotic genes expressed in sequence, with subdivision of skeletal primordia driven by a combination of seven transmembrane‐pass receptors responding to Wnt‐family signals, and by bone morphogenetic family signals that define borders of individual bones. In sea‐dwelling vertebrates, an essentially complete form of the skeleton adapted by the land‐living vertebrates develops in cartilage, based on type II collagen and hydrophilic proteoglycans. In bony fishes, this skeleton is mineralized to form a solid bony skeleton. In the land‐living vertebrates, most of the skeleton is replaced by an advanced vascular mineralized skeleton based on type I collagen, which reduces skeletal mass while facilitating use of skeletal mineral for metabolic homeostasis. Regulation of the mammalian skeleton, in this context, reflects practical adaptations to the needs for life on land that are related to ancestral developmental signals. This regulation includes central nervous system regulation that integrates bone turnover with overall metabolism. Recent work on skeletal development, in addition, demonstrates molecular mechanisms that cause developmental bone diseases.  相似文献   

4.
Indole-2-carboxamidines as novel NR2B selective NMDA receptor antagonists   总被引:1,自引:0,他引:1  
A novel series of indole-2-carboxamidine derivatives was prepared and identified as NR2B selective NMDA receptor antagonists. The influence of the substituents on the indole skeleton as well as the substitution of the benzyl moiety on the biological activity of the compounds was studied. Compound 5a was po active in the formalin test in mouse.  相似文献   

5.
Skeletogenesis occurs continuously during the lifespan of vertebrate organisms. In development, the skeleton is patterned and modeled until each bone achieves its optimal shape and full size. During adults, the skeleton is remodeled to maintain strength and release calcium. The bone-resorbing and bone-forming activities of osteoclasts and osteoblasts, respectively, are tightly coupled to maintain optimal skeletal health; however, during aging and disease, these cells can become uncoupled, adversely affecting skeletal health and strength. Histone deacetylases have emerged as important regulators of endochondral bone formation, osteoblast maturation and osteoclast survival. Histone deacetylases are inhibited by small molecules that are approved and/or in clinical trials as cancer therapeutic drugs or anti-epileptic agents. In this article, the roles of histone deacetylases and effects of histone deacetylase inhibitors on bone and cartilage cells are reviewed.  相似文献   

6.
2-Hydroxysuccinamic acid: a product of asparagine metabolis in plants   总被引:11,自引:0,他引:11  
When [14C]-asparagine was supplied to growing pea leaves aspartate and other compounds were formed, but after 4 hours more than half of the metabolised carbon skeleton was present as one compound, identified as 2-hydroxysuccinamate. This compound was also formed, with a high rate of conversion, when 2-ketosuccinamate (the product of transamination of asparagine) was supplied to the leaves. There was some synthesis of amino acids from 2-hydroxysuccinamate, and in the dark it was metabolised to release some carbon dioxide. Accumulation and metabolism of 2-hydroxysuccinamate has also been observed in soybean leaves. It is suggested that 2-hydroxysuccinamate is a major intermediate in the metabolism of the carbon skeleton of asparagine following transamination, an important route for asparagine ultilisation.  相似文献   

7.
Bansal R  Guleria S  Young LC  Harvey AL 《Steroids》2011,76(3):254-260
Synthesis of eighteen new quaternary ammonium salts of 16E-arylidene androstene derivatives as skeletal muscle relaxants is reported in the present study. The effects of possibly extended interonium distances on muscle relaxant activity are discussed. All the quaternary ammonium steroids produced reduction in the twitch responses, when screened for in vitro neuromuscular blocking activity using isolated chick biventer cervicis muscle preparation. However, the variable interonium distance, which is believed to range from 11 to 17 Å in these quaternary compounds and is associated with the built in flexibility of these structures about the single bonds on the moieties linked to ring D of the steroid skeleton, resulted in varied degrees of muscle relaxant activity. Some of the compounds also inhibited acetylcholinesterase activity in low concentrations so that they would not be directly suitable for use as muscle relaxants.  相似文献   

8.
甾体化合物又称类固醇,是重要的药物活性成分和药物合成中间体,因其具有环戊烷多氢菲的基本骨架,反应类型丰富,其中羟基化反应因产品具有广阔的市场应用前景而受到广泛关注。羟基化反应有化学法和生物法两种,生物法具有区域和立体专一性、对映体专一性等特点而成为目前主要的生产方法。首先从反应原理、类型及机制3个方面介绍了甾体微生物羟基化过程;其次,基于文献及自身研究工作,从甾体羟基化反应的发酵条件、底物溶解性、跨膜运输及反应器内流体力学特性4个角度对羟基化过程的影响进行了综述;最后,基于甾体羟基化反应特性及当前研究进展,对该反应过程后续研究提出展望,旨在为后期甾体羟基化反应的相关研究提供一定参考依据。  相似文献   

9.
Summary The modern hadromerid coralline spongeSpirastrella (Acanthochaetetes) wellsi exhibits a unique secondary high-Mg calcite (>19 mol % MgCO3) basal skeleton. The basal skeleton is constructed of bundles of elongated crystals more or less tangentially orientated. The initial formation of these crystals is controlled by soluble highly acidic aspartic and glutamic-rich (40%) macromolecules. The skeletal mineralization occurs in four different loci: in the top of the calicles, at the tabulae, on collagenous anchor fibres, and within closed spaces between the tabulae. The clicle walls are formed on the uppermost top of the basal skeleton as a continuous process. Based on long term stainings with Ca2+-chelating fluorochroms (calcein, chlorotetracyclines) the growth rate of this sponge is extremely low with ca. 50–100μm/a. The skeletal formation takes places outside the sponge, within a narrow zone (300–500 nm) between the basopinacoderm and the mature basal skeleton. The sponge produces thread-like folded templates (‘spaghetti fibres’) of 0,5–2 μm size, the shape controlling insoluble organic matrix. These templates become mineralized in a first step as MgCO3, then are stretched. A soluble organic matrix is also secreted, and remains are included inside the mineralized skeleton. This organic matrix consists of in a complex mixture containing small very acidic proteins (5, 13, 31 KD; 40% Asp and Glu and therefore most probably Ca2+-binding) and high molecular weight glycoproteins among several other organic compounds. The mature crystals are high-Mg calcites. During calcification large cells with large reserve granules (LCG) are always present in a tight connection with the basopinacoderm. These cells form also the collagenous anchor fibres. Primary tabulae are formed by a non-collagenous organic sheet. Calcification happens only when LCG cells are enriched on the organic sheet. Randomly oriented high-Mg calcite crystals are growing on the collagenous anchor fibres. The same type of the mineralization is observed within the spaces of the tabulae. This particular case of mineralization is controlled by decaying sponge tissue (ammonification). The δ13C values are in equilibrium with the ambient sea water and vary between +3.2 and +2.8 ‰. The mode of mineralization of the basal skeleton can be described as biologically induced resp. matrix mediated.  相似文献   

10.
The stereostructure of cotylenol has been assigned as I on the basis of degradative and spectroscopic evidence. Cotylenol is a novel diterpene with ophiobolane skeleton.  相似文献   

11.
It has long been known that the red blood cell contains a membrane skeleton that stabilizes the plasma membrane, determines its shape, and regulates the lateral distribution of the membrane glyco-proteins to which it is attached. The way in which these functions are regulated in other cells has not been understood. It has now been shown that platelets also contain a membrane skeleton. In contrast to the membrane skeleton of the red blood cell, the platelet membrane skeleton has actin-binding protein, not spectrin, as a major component. The platelet membrane skeleton regulates the same cellular functions as the red blood cell membrane skeleton. Other cells may contain a membrane skeleton that is critical to their viability and normal functioning.  相似文献   

12.
Thompson WR  Rubin CT  Rubin J 《Gene》2012,503(2):179-193
A wide range of cell types depend on mechanically induced signals to enable appropriate physiological responses. The skeleton is particularly dependent on mechanical information to guide the resident cell population towards adaptation, maintenance and repair. Research at the organ, tissue, cell and molecular levels has improved our understanding of how the skeleton can recognize the functional environment, and how these challenges are translated into cellular information that can site-specifically alter phenotype. This review first considers those cells within the skeleton that are responsive to mechanical signals, including osteoblasts, osteoclasts, osteocytes and osteoprogenitors. This is discussed in light of a range of experimental approaches that can vary parameters such as strain, fluid shear stress, and pressure. The identity of mechanoreceptor candidates is approached, with consideration of integrins, pericellular tethers, focal adhesions, ion channels, cadherins, connexins, and the plasma membrane including caveolar and non-caveolar lipid rafts and their influence on integral signaling protein interactions. Several mechanically regulated intracellular signaling cascades are detailed including activation of kinases (Akt, MAPK, FAK), β-catenin, GTPases, and calcium signaling events. While the interaction of bone cells with their mechanical environment is complex, an understanding of mechanical regulation of bone signaling is crucial to understanding bone physiology, the etiology of diseases such as osteoporosis, and to the development of interventions to improve bone strength.  相似文献   

13.
It is known that erythroid and non-erythroid spectrins binding of vesicles and monolayers containing PE proved sensitive to inhibition by red blood cell ankyrin. We now show that the bacterially-expressed recombinant peptides representing betaII(brain)-spectrin's ankyrin-binding domain and its truncated mutants showed lipid-binding activity, although only those containing a full-length amino terminal fragment showed high to moderate affinity towards phospholipid mono- and bilayers and a substantial sensitivity of this binding to inhibition by ankyrin. These results are in accordance with our published data on betaI-spectrin's ankyrin-binding domain [Hryniewicz-Jankowska A, et al. Mapping of ankyrin-sensitive, PE/PC mono- and bilayer binding site in erythroid beta-spectrin. Biochem J 2004;382:677-85]. Moreover, we tested also the effect of transient transfection of living cells of several cell-lines with vectors coding for GFP-conjugates including betaII and also betaI full-length ankyrin-binding domain and their truncated fragments on the membrane skeleton organization. The transfection with constructs encoding full-length ankyrin-binding domain of betaII and betaI spectrin resulted in increased aggregation of membrane skeleton and its punctate appearance in contrast to near normal appearance of membrane skeleton of cells transiently transfected with GFP control or construct encoding ankyrin-binding domain truncated at their N-terminal region. Our results therefore indicate the importance of N-terminal region for lipid-binding activity of the beta-spectrin ankyrin-binding domain and its substantial role in maintaining the spectrin-based skeleton distribution.  相似文献   

14.
Olivier  Rieppel 《Journal of Zoology》1993,231(3):487-509
Patterns and sequence of ossification are described throughout the skeleton of Chelydra serpentina Linnaeus. Evidence is adduced documenting the decoupling of ossification processes from sequence and patterns of chondrification. Convergence of ontogenetic repatterning in the ossification of the axial skeleton in Chelydra and Squamata is discussed, as are problems of adaptive modification of ossification patterns. The development of a carapace may be correlated with changes of ossification patterns in the postcranial axial skeleton of turtles, but the most striking evidence for the adaptive modification of ossification sequence obtains from a comparison of the limb skeleton and its ossification in Chelydra and in sea turtles  相似文献   

15.
16.
Purified nucleoli of HeLa cells were treated sequentially with nonionic detergent, nucleic acid enzyme, low salt and high salt. The residual nucleolar structure termed nucleolar skeleton (nucleolar matrix) was shown as a fine network under electron microscope with DGD embedding-unembedding technique. Such structures of BHK-21 cell and mouse liver cell are similar to that of HeLa cell. The protein composition of the nucleolar skeleton of HeLa cells was analyzed. The protein composition of such nucleolar residual shows obvious difference from the compositions of nuclear matrix and chromosome scaffold. The major protein composition of the nucleolar skeleton of HeLa cells contains 6-7 polypeptides. Their molecular weights are about 48, 43, 36 and 33 ku. Further studies show that actin and fib-rillarin are two major protein components of nucleolar skeleton of HeLa cells.  相似文献   

17.
Circulating levels of steroid and protein hormones were measured in 17 adult male lowland gorillas (Gorilla gorilla). The population included both fertile and infertile males as identified by previous siring of offspring and presence or absence of spermatozoa in the ejaculate obtained by rectal probe electrostimulation. Correlations were sought between levels of testosterone, dihydrotestosterone, androstenedione, estrone, estradiol, progesterone, 170H-progesterone, dihydroepiandrosterone, luteinizing hormone, follicle-stimulating hormone (FSH), and potential fertility status. The results identify normal circulating levels of these hormones, and indicate that aspermatogenesis and infertility are not necessarily associated with any alteration in levels of gonadal steroids. There is an association of aspermatogenesis with elevation of FSH. Levels of adrenal androgens are more similar to other non-human primates than to the human, which is of interest because in other aspects of reproductive physiology so far investigated the gorilla has proved to resemble the human more closely than it does the other nonhuman primates.  相似文献   

18.
19.
The response of a red blood cell (RBC) to deformation depends on its membrane, a composite of a lipid bilayer and a skeleton, which is a closed, twodimensional network of spectrin tetramers as its bonds. The deformation of the skeleton and its lateral redistribution are studied in terms of the RBC resting state for a fixed geometry of the RBC, partially aspirated into a micropipette. The geometry of the RBC skeleton in its initial state is taken to be either two concentric circles, a references biconcave shape or a sphere. It is assumed that in its initial state the skeleton is distributed laterally in a homogeneous manner with its bonds either unstressed, presenting its stress-free state, or prestressed. The lateral distribution was calculated using a variational calculation. It was assumed that the spectrin tetramer bonds exhibit a linear elasticity. The results showed a significant effect of the initial skeleton geometry on its lateral distribution in the deformed state. The proposed model is used to analyze the measurements of skeleton extension ratios by the method of applying two modes of RBC micropipette aspiration.  相似文献   

20.
Purified nucleoli of HeLa cells were treated sequentially with nonionic detergent, nucleic acid enzyme, low salt and high salt. The residual nucleolar structure termed nucleolar skeleton (nucleolar matrix) was shown as a fine network under electron microscope with DGD embedding-unembedding technique. Such structures of BHK-21 cell and mouse liver cell are similar to that of HeLa cell. The protein composition of the nucleolar skeleton of HeLa cells was analyzed. The protein composition of such nucleolar residual shows obvious difference from the compositions of nuclear matrix and chromosome scaffold. The major protein composition of the nucleolar skeleton of HeLa cells contains 6–7 polypeptides. Their molecular weights are about 48, 43, 36 and 33 ku. Further studies show that actin and fibrillarin are two major protein components of nucleolar skeleton of HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号