首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkaline nucleotide pyrophosphatase was isolated from the Pichia guilliermondii Wickerham ATCC 9058 cell-free extracts. The enzyme was 740-fold purified by saturation of ammonium sulphate, gel-chromatography on Sephadex G-150 and ion-exchange chromatography on DEAE-cellulose. Nucleotide pyrophosphatase is the most active at pH 8.3 and 49 degrees C. The enzyme catalyzes the hydrolysis of FAD, NAD+, NADH, NADPH, GTP. The Km value for FAD is 2.4 x 10(-4) M and for NAD+--5.7 x 10(-6) M. The hydrolysis of FAD was inhibited by NAD+, NADP+, ATP, AMP, GTP, PPi and Pi. The Ki for NAD+, AMP and Na4P2O7 was 1.7 x 10(-4) M, 1.1 x 10(-4) M and 5 x 10(-5) M, respectively. Metal chelating compounds, 8-oxyquinoline, o-phenanthroline and EDTA, inhibited completely the enzyme activity. The EDTA effect was irreversible. The molecular weight of the enzyme determined by gel-filtration on Sephadex G-150 and thin-layer gel-filtration chromatography was 78000 dalton. Protein-bound FAD of glucose oxidase is not hydrolyzed by the alkaline nucleotide pyrophosphatase. The enzyme is stable at 2 degrees C in 0.01 M tris-HCl-buffer (pH 7.5).  相似文献   

2.
6-Phosphoryl-O-alpha-D-glucopyranosyl:6-phosphoglucohydrolase (6-phospho-alpha-glucosidase) has been purified from Fusobacterium mortiferum ATCC 25557. p-Nitrophenyl-alpha-D-glucopyranoside 6-phosphate (pNP alpha Glc6P) served as the chromogenic substrate for detection and assay of enzyme activity. The O2-sensitive, metal-dependent phospho-alpha-glucosidase was stabilized during purification by inclusion of dithiothreitol and Mn2+ ion in chromatography buffers. Various 6-phosphoryl-O-alpha-linked glucosides, including maltose 6-phosphate, pNP alpha Glc6P, trehalose 6-phosphate, and sucrose 6-phosphate, were hydrolyzed by the enzyme to yield D-glucose 6-phosphate and aglycone moieties in a 1:1 molar ratio. 6-Phospho-alpha-glucosidase (M(r) of approximately 49,000; pI of approximately 4.9) is activated by Fe2+, Mn2+, Co2+, and Ni2+, and the maximum rate of pNP alpha Glc6P hydrolysis occurs at 40 degrees C within the pH range 7.0 to 7.5. The sequence of the first 32 amino acids of 6-phospho-alpha-glucosidase exhibits 67% identity (90% similarity) to that deduced for the N terminus of a putative phospho-beta-glucosidase (designated ORF f212) encoded by glvG in Escherichia coli. Western blots involving highly specific polyclonal antibody against 6-phospho-alpha-glucosidase and spectrophotometric analyses with pNP alpha Glc6P revealed only low levels of the enzyme in glucose-, mannose-, or fructose-grown cells of F. mortiferum. Synthesis of 6-phospho-alpha-glucosidase increased dramatically during growth of the organism on alpha-glucosides, such as maltose, alpha-methylglucoside, trehalose, turanose, and palatinose.  相似文献   

3.
Carboxylesterase [EC 3.1.1.1] was purified from rabbit liver lysosomes by means of detergent solubilization, and by hydroxyapatite, phenyl-Sepharose and chromatofocusing column chromatographies. The purified enzyme appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be 58,000. This enzyme was eluted at an isoelectric point of approximately 5.8 by chromatofocusing, and exhibited a broad pH optimum of between 6.0 and 9.0. The enzyme hydrolyzed 4-methylumbelliferyl esters of saturated fatty acids (C2-C12), and it also hydrolyzed p-nitrophenylacetate, methyl butyrate, and tributyrin, but not acetanilide. Its activity was completely inhibited by diisopropyl-fluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF) at 10(-4) M, but was not affected by eserine, or by alpha- or beta-naphthyl acetate at 10(-3) M. Various metal ions (Mg2+, Mn2+, Ca2+, Co2+, Cu2+, Zn2+, Ni2+) at 10(-3) M also had no effect on the enzyme activity.  相似文献   

4.
Acid nucleotide pyrophosphatase was isolated from the cell-free extracts of Pichia guilliermondii Wickerham ATCC 9058. The enzyme was 25-fold purified by saturation with ammonium sulphate, gel-filtration on Sephadex G-150 column and ion-exchange chromatography on DEAE-Sephadex A-50 column. The pH optimum was 5.9, temperature optimum--45 degrees C. The enzyme catalyzed the hydrolysis of FAD, NAD+ and NADH, displaying the highest activity with NAD+. The Km, values for FAD, NAD+ and NADH were 1.3 x 10(-5) and 2.9 x 10(-4) M, respectively. The hydrolysis of FAD was inhibited by AMP, ATP, GTP, NAD+ and NADP+. The K1 for AMP was 6.6 x 10(-5) M, for ATP--2.0 X 10(-5) M, for GTP--2.3 X 10(-6) M, for NAD+--1.7 X 10(-4) M. The molecular weight of the enzyme was 136 000 as estimated by gel-filtration on Sephadex G-150 and 142 000 as estimated by thin-layer gel-filtration chromatography on Sephadex G-200 (superfine). Protein-bound FAD of glucose oxidase was not hydrolyzed by acid nucleotide pyrophosphatase. The enzyme was stable at 2 degrees C in 0.05 M tris-maleate buffer, pH 6.2. Alkaline nucleotide pyrophosphatase hydrolyzing FAD was also detected in the cells of P. guilliermondii.  相似文献   

5.
The procedure of isolation, purification, and characterization of glucosamine-6-phosphate acetylase from the pig liver is described. The steps of purification were as follows: adsorption on hydroxylapatite, fractionation with ammonium sulfate, chromatography on cellulose phosphate, electrofocusing, and preparative gel electrophoresis. A highly purified (about 3000-fold) preparation of GlcN-6-P acetylase, with a yield of 23%, was obtained. It was found that GlcN-6-P acetylase from pig liver is heterogeneous and exists in two active forms. The characteristic features of the preparation were established: Mr, about 24 kDa; temperature optimum at 37 degrees; pH optimum at 7.45; and Km (GlcN-6-P) 3.7 x 10(-3) M and Km (AcCoA) 1.4 x 10(-3) M. The ions K+, Na+, NH4+, Mg2+, Mn2+, and CH3COO- do not stimulate the acetylase activity. The product of acetylase reaction (GlcNAc-6-P) inhibits this reaction according to the feedback process. The highly purified preparation of GlcN-6-P acetylase is unstable during storage and it is protected by ampholine or glycine from enzyme inactivation, but it is not protected by 2-mercaptoethanol.  相似文献   

6.
J C Monboisse  J Labadie  P Gouet 《Biochimie》1979,61(10):1169-1175
The Acinetobacter spec collagenase has been almost completely purified. This enzyme is a true collagenase the activity of which is high on collagen. The enzyme is active on insoluble collagen, gelatin and the synthetic Pz-peptide, but has no proteolytic activity on casein or bovine serum-albumin. The collagenase was obtained on a simple medium with gelatin and yeast extract. The enzyme was purified by (NH4)2SO4 precipitation. DEAE cellulose column chromatography, Sephadex G 200 gel-filtration. The molecular weight of the enzyme was found to be 102 000 daltons, and its isoelectric point was found to be 7,7 +/- 0,2. The optimum pH and temperature for insoluble collagen hydrolysis were 7.6 and 37 degrees C, respectively; so, this collagenase corresponds to true collagenase. Hydrolysis of Pz-peptide is activated by Ca2+ and inhibited by metal ions (Cu2+, Fe3+, Zn2+, Pb2+, Hg2+). EDTA and o-phenanthroline induced a very significant reduction in enzyme activity. Iodoacetate and p-CMB induced a slight reduction in enzyme activity only at high concentrations (10-2M). The collagenase is most stable for temperatures less than or equal to 50 degrees C.  相似文献   

7.
An intracellular beta-1,6-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) was produced semiconstitutively by Flavobacterium M64. This enzyme was purified 180-fold by fractionation with ammonium sulfate followed by chromatographies on carboxymethylcellulose, hydroxyapatite and Sephadex G-100. The final preparation appeared homogeneous on disc electrophoresis on polyacrylamide gel. The molecular weight of the enzyme was determined to be ca. 59 000 by Sephadex G-100 gel filtration and sodium dodecylsulfate-polyacrylamide gel electrophoresis. The optimum pH of the enzyme was 5.8 and the optimum temperature was 40 degrees C. The enzyme readily hydrolyzed oligomers with beta-a,6-glucosidic linkages, converting them to glucose. The Km values for gentio-biose, -triose, -tetraose and -pentaose were 2.8, 3.0, 4.2 and 4.6 times 10- minus 4 M, respectively. The rates of their hydrolyses decreased with increase in their chain lengths. The enzyme was concluded to be a beta-1,6-glucosidase from its substrate specificity, production of glucose, transferring ability and inhibition by glucono-delta-lactone. The enzyme activity was inhibited by Hg-2+, Cu-2+, Ag-+, Fe-3+, p-chloromercuribenzoate, N-ethylmaleimide, glucose and trishydroxyaminomethane (Tris) but not by ethylenediaminetetraacetic acid.  相似文献   

8.
Properties of immobilized AMP-aminohydrolase from rabbit muscles are studied. The enzyme retains its activity for a year, is stable under manifold treatment with the substrate or under single treatment with 1 M NaCl which contains 50% ethylene glycol or 10% isopropanol and under treatment with 5 M K2 HPO4 (pH 8.5). The established pH-optimum (6.5-7.0) and the temperature optimum (30-40 degrees C) for immobilized AMP-aminohydrolase as well as inhibition of its activity by Co2+, Cd2+, Zn2+ and n-chloromercury benzoate indicate similarity of its properties with those of the purified enzyme.  相似文献   

9.
Riboflavin kinase (E.C.2.7.1.26) was isolated from the cells of the yeast Pichia guilliermondii. The enzyme was 680-fold purified uzing ammonium sulphate fractionation, chromatography on DEAE-Sephadex A-50 and CM-Sephadex C-50 and gel-filtration through Sephadex G-75. Purified enzyme preparation was free from phosphatases and FAD-synthetase. The pH optimum was 8,7, the temperature optimum-45 degrees C. The enzyme was activated by Zn2+, Mg2+ and Co2+ ions. Km for riboflavin was 1,0x10(-5) M, for ATP -- 6,7X10(-6) M. Riboflavin kinase catalyzed the phosphorylation of riboflavin analogues with the substitution of methyl groups at positions 7 and 8. UTP, GTP, ADP and CTP, besides ATP, were phosphate donors. AMP inhibited the enzyme activity. Molecular weight of the enzyme was 28000, as estimated by gel-filtration through Sephadex G-150. Purified riboflavin kinase was stable under storage.  相似文献   

10.
1. Rat liver microsomal preparations incubated with 200mM-NaCl at either 0 or 30 degrees C released about 20-30% of the membrane-bound UDP-galactose-glycoprotein galactosyl-transferase (EC 2.4.1.22) into a 'high-speed' supernatant. The 'high-speed' supernatant was designated the 'saline wash' and the galactosyltransferase released into this fraction required Triton X-100 for activation. It was purified sixfold by chromatography on Sephadex G-200, and appeared to have a higher molecular weight than the soluble serum enzyme. 2. Rat serum galactosyltransferase was purified 6000-7000-fold by an affinity-chromatographic technique using a column of activated Sepharose 4B coupled with alpha-lactalbumin. The purified enzyme ran as a single broad band on polacrylamide gels and contained no sialytransferase, N-acetylglucosaminyltransferase and UDP-galactose pyrophosphatase activities. 3. The highly purified enzyme had properties similar to those of both soluble and membrane-bound galactosyltransferase. It required 0.1% Triton X-100 for stabilization, but lost activity on freezing. The enzyme had an absolute requirement for Mn2+, not replaceable by Ca2+, Mg2+, Zn2+ or Co2+. It was active over a wide pH range (6-8) and had a pH optimum of 6.8. The apparent Km for UDP-galactose was 12.5 x 10(-6) M. Alpha-Lactalbumin had no appreciable effect on UDP-galactose-glycoprotein galactosyltransferase, but it increased the specificity for glucose rather than for N-acetylglucosamine, thus modifying the enzyme to a lactose synthetase. 4. The possibility of a conversion of higher-molecular-weight liver enzyme into soluble serum enzyme is discussed, especially in relation to the elevated activities of this and other glycosyltransferases in patients with liver diseases.  相似文献   

11.
Characterization and kinetics of 45 kDa chitosanase from Bacillus sp. P16   总被引:1,自引:0,他引:1  
An extracellular 45 kDa endochitosanase was purified and characterized from the culture supernatant of Bacillus sp. P16. The purified enzyme showed an optimum pH of 5.5 and optimum temperature of 60 degrees C, and was stable between pH 4.5-10.0 and under 50 degrees C. The Km and Vmax were measured with a chitosan of a D.A. of 20.2% as 0.52 mg/ml and 7.71 x 10(-6) mol/sec/mg protein, respectively. The enzyme did not degrade chitin, cellulose, or starch. The chitosanase digested partially N-acetylated chitosans, with maximum activity for 15-30% and lesser activity for 0-15% acetylated chitosan. The chitosanase rapidly reduced the viscosity of chitosan solutions at a very early stage of reaction, suggesting the endotype of cleavage in polymeric chitosan chains. The chitosanase hydrolyzed (GlcN)7 in an endo-splitting manner producing a mixture of (GlcN)(2-5). Time course studies showed a decrease in the rate of substrate degradation from (GlcN)7 to (GlcN)6 to (GlcN)5, as indicated by the apparent first order rate constants, k1 values, of 4.98 x 10(-4), 2.3 x 10(-4), and 9.3 x 10(-6) sec(-1), respectively. The enzyme hardly catalyzed degradation of chitooligomers smaller than the pentamer.  相似文献   

12.
Cathepsin L-like proteinase was purified approximately 1708-fold with 40% activity yield to an apparent electrophoretic homogeneity from goat brain by homogenization, acid-autolysis at pH 4.2, 30-80% (NH4)2SO4 fractionation, Sephadex G-100 column chromatography and ion-exchange chromatography on CM-Sephadex C-50 at pH 5.0 and 5.6. The molecular weight of proteinase was found to be approximately 65,000 Da, by gel-filtration chromatography. The pH optima were 5.9 and 4.5 for the hydrolysis of Z-Phe-Arg-4mbetaNA (benzyloxycarbonyl-L-phenylalanine-L-arginine-4-methoxy-beta-naphthylamide) and azocasein, respectively. Of the synthetic chromogenic substrates tested, Z-Phe-Arg-4mbetaNA was hydrolyzed maximally by the enzyme (Km value for hydrolysis was 0.06 mM), followed by Z-Val-Lys-Lys-Arg-4mbetaNA, Z-Phe-Val-Arg-4mbetaNA, Z-Arg-Arg-4mbetaNA and Z-Ala-Arg-Arg-4mbetaNA. The proteinase was activated maximally by glutathione in conjunction with EDTA, followed by cysteine, dithioerythritol, thioglycolic acid, dithiothreitol and beta-mercaptoethanol. It was strongly inhibited by p-hydroxymercuribenzenesulphonic acid, iodoacetic acid, iodoacetamide and microbial peptide inhibitors, leupeptin and antipain. Leupeptin inhibited the enzyme competitively with Ki value 44 x 10(-9) M. The enzyme was strongly inhibited by 4 M urea. Metal ions, Hg(2+), Ca(2+), Cu(2+), Li(2+), K(+), Cd(2+), Ni(2+), Ba(2+), Mn(2+), Co(2+) and Sn(2+) also inhibited the activity of the enzyme. The enzyme was stable between pH 4.0-6.0 and up to 40 degrees C. The optimum temperature for the hydrolysis of Z-Phe-Arg-4mbetaNA was approximately 50-55 degrees C with an activation energy Ea of approximately 6.34 KCal mole(-1).  相似文献   

13.
周华  洪媛  严明  许琳 《生物工程学报》2007,23(2):278-283
为获得具有热稳定性的天冬氨酸转氨酶,从极端嗜热细菌Thermus thermophilus HB8中克隆得到天冬氨酸转氨酶基因aspC,并在大肠杆菌BL21(DE3)和Rosetta(DE3)中进行表达,发现在Rosetta(DE3)中具有较高的表达量。重组酶的最适反应pH是7.0,37℃下在pH8~10的缓冲液中保温1h酶活几乎不改变。重组酶反应的最适温度为75℃,酶活稳定的温度范围为25~55℃。重组酶在65℃时半衰期为3.5h,75℃时为2.5h。重组酶的KmKG为7.559mmol/L,VmaxKG为0.086mmol/(L·min),KmAsp为2.031mmol/L,VmaxAsp为0·024mmol/(L·min)。Ca2 、Fe3 、Mn2 等金属离子对酶活性有微弱抑制作用。  相似文献   

14.
利用Absidiasp.R菌株,通过液体发酵的方法,得到了一种高活性的大豆异黄酮糖基水解酶。该酶经硫酸铵分级沉淀、DEAE-Cellocuse(DE-52)离子交换层析纯化,被纯化了11倍,收率为10.9%;经SDS-聚丙烯酰胺凝胶电泳测得该酶的分子量为53kD;该酶的最适反应温度为50℃;最适pH为5.0;温度低于60℃,pH在5.0~7.0范围内该酶较稳定,Co2 、Ca2 对该酶有激活作用;Ag 、Cu2 对该酶有抑制作用。当以染料木甙为底物时该酶的米氏常数(Km)为1.3×10-2mol/L。等电聚焦电泳测得其等电点为3.2。  相似文献   

15.
Candida peltata (NRRL Y-6888) produced beta-glucosidase when grown in liquid culture on various substrates (glucose, xylose, L-arabinose, cellobiose, sucrose, and maltose). An extracellular beta-glucosidase was purified 1,800-fold to homogeneity from the culture supernatant of the yeast grown on glucose by salting out with ammonium sulfate, ion-exchange chromatography with DEAE Bio-Gel A agarose, Bio-Gel A-0.5m gel filtration, and cellobiose-Sepharose affinity chromatography. The enzyme was a monomeric protein with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. It was optimally active at pH 5.0 and 50 degrees C and had a specific activity of 108 mumol.min-1.mg of protein-1 against p-nitrophenyl-beta-D-glucoside (pNP beta G). The purified beta-glucosidase readily hydrolyzed pNP beta G, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, with Km values of 2.3, 66, 39, 35, 21, and 18 mM, respectively. The enzyme was highly tolerant to glucose inhibition, with a Ki of 1.4 M (252 mg/ml). Substrate inhibition was not observed with 40 mM pNP beta G or 15% cellobiose. The enzyme did not require divalent cations for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol at an optimal concentration (0.75%, vol/vol) stimulated the initial enzyme activity by only 11%. Cellobiose (10%, wt/vol) was almost completely hydrolyzed to glucose by the purified beta-glucosidase (1.5 U/ml) in both the absence and presence of glucose (6%). Glucose production was enhanced by 8.3% when microcrystalline cellulose (2%, wt/vol) was treated for 24 h with a commercial cellulase preparation (cellulase, 5 U/ml; beta-glucosidase, 0.45 U/ml) that was supplemented with purified beta-glucosidase (0.4 U/ml).  相似文献   

16.
D Fleischman  M Denisevich 《Biochemistry》1979,18(23):5060-5066
The guanylate cyclase activity of axoneme--basal apparatus complexes isolated from bovine retinal rods has been investigated. The Mg2+ and Mn2+ complexes of GTP4- serve as substrates. Binding of an additional mole of Mg2+ or Mn2+ per mole of enzyme is required. Among cations which are ineffective are Ca2+, Ni2+, Fe2+, Fe3+, Zn2+, and Co2+. The kinetics are consistent with a mechanism in which binding of Mg2+ or Mn2+ to the enzyme must precede binding of MgGTP or MnGTP. The apparent dissociation constants of the Mg--enzyme complex and the Mn--enzyme complex are 9.5 x 10(-4) and 1.1 x 10(-4) M, respectively. The apparent dissociation constants for binding of MgGTP and MnGTP to the complex of the enzyme with the same metal are 7.9 x 10(-4) and 1.4 x 10(-4) M, respectively. The cyclase activity is maximal and independent of pH between pH 7 and 9. KCl and NaCl are stimulatory, especially at suboptimal concentrations of Mg2+ or Mn2+. Ca2+ and high concentrations of Mg2+ and Mn2+ are inhibitory. Ca2+ inhibition appears to require the binding of 2 mol of Ca2+ per mol of enzyme. The dissociation constant of the Ca2--enzyme complex is estimated to be 1.4 x 10(-6) M2. The axoneme--basal apparatus preparations contain adenylate cyclase activity whose magnitude is 1--10% that of the guanylate cyclase activity.  相似文献   

17.
Styrene-methacrylic acid copolymers of varying combinations crosslinked with p-DVB (1-2%) and porous structure were synthesized to be used as carriers in trypsin immobilization. The styrene-methacrylic acid copolymers containing free carboxy groups were activated by conversion into the mixed carbonic anhydride with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) at pH 4.0. The degree of activation of copolymers were determined from the amount of p-aminobenzoic acid each could bind. The activated copolymers were incubated with trypsin in phosphate buffer (pH 8.0) at 4 degrees C for 24 h. The optimum conditions for enzymatic activity measurements determined and the activity tests were carried out in 1.5 x 10(-2)M CaCl(2) solution (pH 8.0) at 0.05 ionic strength with a pH-stat instrument. The dependence of the activity of styrene-methacrylic acid (SMA)/trypsin derivatives to pH was investigated and it was observed that the optimum pH of the immobilized trypsin derivatives moved to the basic region compared to the native trypsin. It was found that as the ionic strength increased, the shift in the optimum pH decreased and the activity increased. The Michaelis constants for the SMA-trypsin derivatives were determined with aid of Lineweaver-Burk diagrams. The thermal, storage, and operational stabilities of SMA-trypsin derivatives were assessed. It was found that the above stabilities for all the immobilized trypsin derivatives were better than that for the native trypsin.  相似文献   

18.
5'-Methylthioadenosine phosphorylase has been isolated from C.acidophila, a thermophilic bacterium living in acid hot springs at temperatures ranging from 63 to 89 degrees C. The enzyme has been purified to homogeneity in 32% yield. The enzyme shows a high degree of thermophilicity, its temperature optimum being 93 degrees C in the in vitro assay. The enzyme is exceptionally stable; no loss of activity was observable after exposure for 1 h at 100 degrees C. The optimum pH is about 7,2, with one-half of the maximal activity occurring at pH 6 and 9. The apparent Km for the substrates are: 8,3 x 10(-5) M for MTA and 4,3 x 10(-4) M for phosphate ions.  相似文献   

19.
Adenosine triphosphatase (ATPase) from Thiobacillus ferrooxidans was purified 55-fold. Polyacrylamide gel electrophoresis of the most purified fraction showed only one major band; histochemical analysis showed that the ATPase activity was associated with this band. The pH optimum is 9-10. The enzyme hydrolyzed ATP stoichiometrically to ADP and inorganic phosphate, the Km for this substrate being 7.75 times 10-3 M. GTP and ITP are alternate substrates, the Km values for these being 6.71 times 10-3 M and 3.12 times 10-3 M, respectively. ADP is slightly hydrolyzed. Magnesium, manganese, and calcium can serve as cofactors; Km values for these are 2.0 times 10-3 M, 9.4 times 10-4 M, and 8.0 times 10-4 M, respectively. The enzyme activity was not activated by either sodium or potassium, but a combination of the two ions were inhibitory. Azide and p-hydroxymercuribenzoate strongly inhibited the enzyme activity, whereas cyanide, dinitrophenol, and N,N'-dicyclohexylcarbodiimide (DCCD) were without effect. The enzyme was cold labile at 0 degrees-C, but was more stable at 18-24 degrees-C.  相似文献   

20.
Polyphosphoinositide-specific phosphodiesterase (phospholipase C) activity against phosphatidylinositol 4,5-bisphosphate has been examined in disrupted bovine retinal rod outer segments. The enzyme was strictly modulated by free calcium ion concentration and maximally activated at 10(-5) M Ca2+ (91 +/- 4 nmoles phosphatidylinositol 4,5-bisphosphate hydrolyzed/min/mg of protein). Guanine nucleotides did not affect in vitro phospholipase C activity either in the presence or absence of light, carbachol or epinephrine. The pH optimum at 10(-5) M Ca2+ in the presence of sodium deoxycholate was 6.5. The enzyme of bovine rod outer segments was concluded to be indirectly regulated by the phototransduction events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号