首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(2):231-232
Bcl-2, originally identified as a universal inhibitor of apoptotic cell death, has since been implicated in suppressing autophagy, the cell’s quality control mechanism. Our recent study demonstrates that the anti-autophagic aspect of Bcl-2 can function as a promoter of oncogenic growth, independently of its role in apoptosis signaling. It is likely that the increase in Bcl-2 often seen in breast and other cancers might render cells error-prone by blunting autophagy, while concomitantly keeping damaged cells alive. The outcome of such a ‘double hit’ of Bcl-2 may synergistically promote tumor growth and increase the chance of cancer development and drug resistance.  相似文献   

2.
Tissue homeostasis is controlled by the availability of growth factors, which sustain exogenous nutrient uptake and prevent apoptosis. Although autophagy can provide an alternate intracellular nutrient source to support essential basal metabolism of apoptosis-resistant growth factor–withdrawn cells, antiapoptotic Bcl-2 family proteins can suppress autophagy in some settings. Thus, the role of autophagy and interactions between autophagy and apoptosis in growth factor–withdrawn cells expressing Bcl-2 or Bcl-xL were unclear. Here we show autophagy was rapidly induced in hematopoietic cells upon growth factor withdrawal regardless of Bcl-2 or Bcl-xL expression and led to increased mitochondrial lipid oxidation. Deficiency in autophagy-essential gene expression, however, did not lead to metabolic catastrophe and rapid death of growth factor–deprived cells. Rather, inhibition of autophagy enhanced survival of cells with moderate Bcl-2 expression for greater than 1 wk, indicating that autophagy promoted cell death in this time frame. Cell death was not autophagic, but apoptotic, and relied on Chop-dependent induction of the proapoptotic Bcl-2 family protein Bim. Therefore, although ultimately important, autophagy-derived nutrients appear initially nonessential after growth factor withdrawal. Instead, autophagy promotes tissue homeostasis by sensitizing cells to apoptosis to ensure only the most apoptosis-resistant cells survive long-term using autophagy-derived nutrients when growth factor deprived.  相似文献   

3.
Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy-induced apoptosis. Here, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression, the number of GFP-LC3-II-labeled autophagosome positive cells and autophagic cell death (p < 0.05). Furthermore, doxorubicin at a high dose (IC(95), 1 microM) induced apoptosis but at a low dose (IC(50), 0.07 microM) induced only autophagy and Beclin-1 expression. When combined with Bcl-2 siRNA, doxorubicin (IC(50)) enhanced autophagy as indicated by the increased number cells with GFP-LC3-II-stained autophagosomes (punctuated pattern positive). These results provided the first evidence that targeted silencing of Bcl-2 induces autophagic cell death in MCF-7 breast cancer cells and that Bcl-2 siRNA may be used as a therapeutic strategy alone or in combination with chemotherapy in breast cancer cells that overexpress Bcl-2.  相似文献   

4.
The anti-apoptotic Bcl-2 protein, which confers oncogenic transformation and drug resistance in most human cancers, including breast cancer, has recently been shown to effectively counteract autophagy by directly targeting Beclin1, an essential autophagy mediator and tumor suppressor. However, it remains unknown whether autophagy inhibition contributes to Bcl-2-mediated oncogenesis. Here, by using a loss-of-function mutagenesis study, we show that Bcl-2-mediated antagonism of autophagy has a critical role in enhancing the tumorigenic properties of MCF7 breast cancer cells independent of its anti-apoptosis activity. A Bcl-2 mutant defective in apoptosis inhibition but competent for autophagy suppression promotes MCF7 breast cancer cell growth in vitro and in vivo as efficiently as wild-type Bcl-2. The growth-promoting activity of this Bcl-2 mutant is strongly correlated with its suppression of Beclin1-dependent autophagy, leading to sustained p62 expression and increased DNA damage in xenograft tumors, which may directly contribute to tumorigenesis. Thus, the anti-autophagic property of Bcl-2 is a key feature of Bcl-2-mediated oncogenesis and may in some contexts, serve as an attractive target for breast and other cancer therapies.  相似文献   

5.
《Autophagy》2013,9(5):612-620
Glucocorticosteroid hormones, including prednisone and dexamethasone (Dex), have been used to treat lymphoid malignancies for many years because they readily induce apoptosis in immature lymphocytes lacking Bcl-2. However, elevated expression of the anti-apoptotic protein Bcl-2 inhibits apoptosis and contributes to glucocorticoid resistance. Using the Bcl-2-negative WEHI7.2 lymphoma line as an experimental model, we found that Dex not only induces apoptosis but also induces autophagy. The caspase inhibitor Z-VAD-fmk inhibited apoptosis but not autophagy in Dex-treated cells. Bcl-2 overexpression inhibited Dex-induced apoptosis even more potently than Z-VAD-fmk and, contrary to previous reports, Bcl-2 neither interacted with Beclin-1 nor inhibited autophagy. Rather, Bcl-2 overexpression facilitated detection of Dex-induced autophagy by both steady state methods and flux measurements, ostensibly due to apoptosis inhibition. Autophagy contributed to prolonged survival of Bcl-2-positive lymphoma cells following Dex treatment, as survival was reduced when autophagy was inhibited by 3-methyladenine. These findings emphasize the important interplay between apoptosis and autophagy and suggest a novel mechanism by which Bcl-2, which is frequently elevated in lymphoid malignancies, contributes to glucocorticoid resistance and survival of lymphoma cells.  相似文献   

6.
《Autophagy》2013,9(5):669-679
Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy induced apoptosis. In this study, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in preautopghagosomal and autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression and the number of GFP-LC3-II-labeled autophagosome (punctuated pattern) positive cells and autophagic cell death (p  相似文献   

7.
8.
Glucocorticosteroid hormones, including prednisone and dexamethasone (Dex), have been used to treat lymphoid malignancies for many years because they readily induce apoptosis in immature lymphocytes lacking Bcl-2. However, elevated expression of the anti-apoptotic protein Bcl-2 inhibits apoptosis and contributes to glucocorticoid resistance. Using the Bcl-2-negative WEHI7.2 lymphoma line as an experimental model, we found that Dex not only induces apoptosis but also induces autophagy. The caspase inhibitor Z-VAD-fmk inhibited apoptosis but not autophagy in Dex-treated cells. Bcl-2 overexpression inhibited Dex-induced apoptosis even more potently than Z-VAD-fmk and, contrary to previous reports, Bcl-2 neither interacted with Beclin-1 nor inhibited autophagy. Rather, Bcl-2 overexpression facilitated detection of Dex-induced autophagy by both steady state methods and flux measurements, ostensibly due to apoptosis inhibition. Autophagy contributed to prolonged survival of Bcl-2-positive lymphoma cells following Dex treatment, as survival was reduced when autophagy was inhibited by 3-methyladenine. These findings emphasize the important interplay between apoptosis and autophagy and suggest a novel mechanism by which Bcl-2, which is frequently elevated in lymphoid malignancies, contributes to glucocorticoid resistance and survival of lymphoma cells.  相似文献   

9.
Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy   总被引:58,自引:0,他引:58  
Apoptosis and autophagy are both tightly regulated biological processes that play a central role in tissue homeostasis, development, and disease. The anti-apoptotic protein, Bcl-2, interacts with the evolutionarily conserved autophagy protein, Beclin 1. However, little is known about the functional significance of this interaction. Here, we show that wild-type Bcl-2 antiapoptotic proteins, but not Beclin 1 binding defective mutants of Bcl-2, inhibit Beclin 1-dependent autophagy in yeast and mammalian cells and that cardiac Bcl-2 transgenic expression inhibits autophagy in mouse heart muscle. Furthermore, Beclin 1 mutants that cannot bind to Bcl-2 induce more autophagy than wild-type Beclin 1 and, unlike wild-type Beclin 1, promote cell death. Thus, Bcl-2 not only functions as an antiapoptotic protein, but also as an antiautophagy protein via its inhibitory interaction with Beclin 1. This antiautophagy function of Bcl-2 may help maintain autophagy at levels that are compatible with cell survival, rather than cell death.  相似文献   

10.
Vitamin K2 (menaquinone-4: VK2) is a potent inducer for apoptosis in leukemia cells in vitro. HL-60bcl-2 cells, which are derived from a stable transfectant clone of the human bcl-2 gene into the HL-60 leukemia cell line, show 5-fold greater expression of the Bcl-2 protein compared with HL-60neo cells, a control clone transfected with vector alone. VK2 induces apoptosis in HL-60neo cells, whereas HL-60bcl-2 cells are resistant to apoptosis induction by VK2 but show inhibition of cell growth along with an increase of cytoplasmic vacuoles during exposure to VK2. Electron microscopy revealed formation of autophagosomes and autolysosomes in HL-60bcl-2 cells after exposure to VK2. An increase of acid vesicular organelles (AVOs) detected by acridine orange staining for lysosomes as well as conversion of LC3B-I into LC3B-II by immunoblotting and an increased punctuated pattern of cytoplasmic LC3B by fluorescent immunostaining all supported induction of enhanced autophagy in response to VK2 in HL-60bcl-2 cells. However, during shorter exposure to VK2, the formation of autophagosomes was also prominent in HL-60neo cells although nuclear chromatin condensations and nuclear fragments were also observed at the same time. These findings indicated the mixed morphologic features of apoptosis and autophagy. Inhibition of autophagy by either addition of 3-methyladenine, siRNA for Atg7, or Tet-off Atg5 system all resulted in attenuation of VK2-incuded cell death, indicating autophagy-mediated cell death in response to VK2. These data demonstrate that autophagy and apoptosis can be simultaneously induced by VK2. However, autophagy becomes prominent when the cells are protected from rapid apoptotic death by a high expression level of Bcl-2.  相似文献   

11.
Starvation induces autophagy to preserve cellular homeostasis in virtually all eukaryotic organisms. However, the mechanisms by which starvation induces autophagy are not completely understood. In mammalian cells, the antiapoptotic protein, Bcl-2, binds to Beclin 1 during nonstarvation conditions and inhibits its autophagy function. Here we show that starvation induces phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the nonstructured loop; Bcl-2 dissociation from Beclin 1; and autophagy activation. In contrast, viral Bcl-2, which lacks the phosphorylation site-containing nonstructured loop, fails to dissociate from Beclin 1 during starvation. Furthermore, the stress-activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, mediates starvation-induced Bcl-2 phosphorylation, Bcl-2 dissociation from Beclin 1, and autophagy activation. Together, our findings demonstrate that JNK1-mediated multisite phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. These findings define a mechanism that cells use to regulate autophagic activity in response to nutrient status.  相似文献   

12.
Autophagy plays an important role in tumorigenesis. Mitochondrion-associated protein LRPPRC interacts with MAP1S that interacts with LC3 and bridges autophagy components with microtubules and mitochondria to affect autophagy flux. Dysfunction of LRPPRC and MAP1S is associated with poor survival of ovarian cancer patients. Furthermore, elevated levels of LRPPRC predict shorter overall survival in patients with prostate adenocarcinomas or gastric cancer. To understand the role of LRPPRC in tumor development, previously we reported that LRPPRC forms a ternary complex with Beclin 1 and Bcl-2 to inhibit autophagy. Here we further show that LRPPRC maintains the stability of Parkin that mono-ubiquitinates Bcl-2 to increase Bcl-2 stability to inhibit autophagy. Under mitophagy stress, Parkin translocates to mitochondria to cause rupture of outer mitochondrial membrane and bind with exposed LRPPRC. Consequently, LRPPRC and Parkin help mitochondria being engulfed in autophagosomes to be degraded. In cells under long-term mitophagy stress, both LRPPRC and Parkin become depleted coincident with disappearance of mitochondria and final autophagy inactivation due to depletion of ATG5-ATG12 conjugates. LRPPRC functions as a checkpoint protein that prevents mitochondria from autophagy degradation and impact tumorigenesis.  相似文献   

13.
Lian J  Karnak D  Xu L 《Autophagy》2010,6(8):1201-1203
Bcl-2 is a key dual regulator of autophagy and apoptosis, but how the level of Bcl-2 influences the cellular decision between autophagy and apoptosis is unclear. The natural BH3-mimetic (-)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, whereas apoptosis is preferentially induced in androgen-dependent or -independent cells with low Bcl-2. (-)-Gossypol induces autophagy via blocking Bcl-2-Beclin 1 interaction at the endoplasmic reticulum (ER), together with downregulating Bcl-2, upregulating Beclin 1 and activating the autophagic pathway. Furthermore, (-)-gossypol-induced autophagy is Beclin 1- and Atg5-dependent. These results provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which could facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.  相似文献   

14.
Gossypol, a natural Bcl-2 homology domain 3 mimetic compound isolated from cottonseeds, is currently being evaluated in clinical trials. Here, we provide evidence that gossypol induces autophagy followed by apoptotic cell death in both the MCF-7 human breast adenocarcinoma and HeLa cell lines. We first show that knockdown of the Bcl-2 homology domain 3-only protein Beclin 1 reduces gossypol-induced autophagy in MCF-7 cells, but not in HeLa cells. Gossypol inhibits the interaction between Beclin 1 and Bcl-2 (B-cell leukemia/lymphoma 2), antagonizes the inhibition of autophagy by Bcl-2, and hence stimulates autophagy. We then show that knockdown of Vps34 reduces gossypol-induced autophagy in both cell lines, and consistent with this, the phosphatidylinositol 3-phosphate-binding protein WIPI-1 is recruited to autophagosomal membranes. Further, Atg5 knockdown also reduces gossypol-mediated autophagy. We conclude that gossypol induces autophagy in both a canonical and a noncanonical manner. Notably, we found that gossypol-mediated apoptotic cell death was potentiated by treatment with the autophagy inhibitor wortmannin or with small interfering RNA against essential autophagy genes (Vps34, Beclin 1, and Atg5). Our findings support the notion that gossypol-induced autophagy is cytoprotective and not part of the cell death process induced by this compound.  相似文献   

15.
Apogossypolone (ApoG2), a novel derivative of gossypol, exhibits superior antitumor activity in Bcl-2 transgenic mice, and induces autophagy in several cancer cells. However, the detailed mechanisms are not well known. In the present study, we showed that ApoG2 induced autophagy through Beclin-1- and reactive oxygen species (ROS)-dependent manners in human hepatocellular carcinoma (HCC) cells. Incubating the HCC cell with ApoG2 abrogated the interaction of Beclin-1 and Bcl-2/xL, stimulated ROS generation, increased phosphorylation of ERK and JNK, and HMGB1 translocation from the nucleus to cytoplasm while suppressing mTOR. Moreover, inhibition of the ROS-mediated autophagy by antioxidant N-acetyl-cysteine (NAC) potentiates ApoG2-induced apoptosis and cell killing. Our results show that ApoG2 induced protective autophagy in HCC cells, partly due to ROS generation, suggesting that antioxidant may serve as a potential chemosensitizer to enhance cancer cell death through blocking ApoG2-stimulated autophagy. Our novel insights may facilitate the rational design of clinical trials for Bcl-2-targeted cancer therapy.  相似文献   

16.
Macroautophagy (called autophagy hereafter) is a catabolic process activated by various types of stress, most notably by nutrient deprivation. The autophagic degradation of intracellular macromolecules provides metabolic support for the cell; however, this physiological process can also initiate a form of cell death (type 2 programmed cell death). Here we report that oxygen deprivation can activate the autophagic pathway in human cancer cell lines. We observed that hypoxia induced distinct cellular changes characteristic of autophagy such as an increase in cytoplasmic acidic vesicles, and processing and cellular localization of microtubule-associated protein-1 light chain 3. Oxygen deprivation-induced autophagy did not require nutrient deprivation, hypoxia-inducible factor-1 (HIF-1) activity, or expression of the HIF-1 target gene BNIP3 (Bcl-2 adenovirus E1a nineteen kilodalton interacting protein 3) or BNIP3L (BNIP3 like protein). Hypoxia-induced autophagy involved the activity of 5'-AMP-activated protein kinase (AMPK). Finally, we determined that cells lacking the autophagy gene ATG5 were unable to activate the autophagic machinery in hypoxia, had decreased oxygen consumption and increased glucose uptake under hypoxia, had increased survival in hypoxic environments, and exhibited accelerated growth as xenografted tumors. Together, these findings suggest that the autophagic degradation of cellular macromolecules contributes to the energetic balance governed by AMPK, and that suppression of autophagy in transformed cells can increase both resistance to hypoxic stress and tumorigenicity.  相似文献   

17.
Photodynamic therapy (PDT) induces apoptosis in many cell types. Recent reports identified autophagy as an alternative cell-death process following PDT. Here we investigated the occurrence of autophagy after PDT with the photosensitizer Pc 4 in human cancer cells that are deficient in the pro-apoptotic factor Bax (human prostate cancer DU145) or the apoptosis mediator caspase-3 (human breast cancer MCF-7v) and in apoptosis-competent cells (MCF-7c3 stably overexpressing human pro-caspase-3 and Chinese hamster ovary CHO 5A100). Further, each cell line was also studied with and without stably overexpressed Bcl-2. By electron microscopy and immunoblot analysis, autophagy was observed in all cells studied, whether or not they were capable of typical apoptosis or overexpressed Bcl-2. Bcl-2 overexpression protected against PDT-induced apoptosis and loss of clonogenicity in apoptosis-competent cells (MCF-7c3 and CHO); however, it did not protect against the development of autophagy or against loss of clonogenicity in apoptosis-deficient cells (MCF-7v and DU145). The results show that autophagy may be the dominant cell death pathway following PDT in cells that are incapable of undergoing normal apoptosis. In such cells, Bcl-2 does not protect against autophagic death.  相似文献   

18.
Previous research showed that co-down-regulation of caspase-3/7 in rCHO cells, unlike Bcl-2 overexpression, did not effectively block apoptotic cell death induced by 3mM sodium butyrate (NaBu). Here, it is found that the control of autophagy is also related to this different response to NaBu treatment. With NaBu treatment, co-down-regulation of caspase-3/7 enhanced autophagy induction, whereas Bcl-2 overexpression delayed onset of autophagy induction in a Beclin-1 independent manner. The blockage of autophagy showed a detrimental effect on cell viability even in the Bcl-2 overexpressing cells, which suggests the importance of autophagy control for successful anti-cell death engineering of rCHO cells.  相似文献   

19.
A natural BH3-mimetic, small-molecule inhibitor of Bcl-2, (−)-gossypol, shows promise in ongoing phase II and III clinical trials for human prostate cancer. In this study we show that (−)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, both in vitro and in vivo, but not in androgen-dependent (AD) cells with low Bcl-2 and sensitive to apoptosis. The Bcl-2 inhibitor induces autophagy through blocking Bcl-2–Beclin1 interaction, together with downregulating Bcl-2, upregulating Beclin1, and activating the autophagic pathway. The (−)-gossypol-induced autophagy is dependent on Beclin1 and Atg5. Our results show for the first time that (−)-gossypol can also interrupt the interactions between Beclin1 and Bcl-2/Bcl-xL at endoplasmic reticulum, thus releasing the BH3-only pro-autophagic protein Beclin1, which in turn triggers the autophagic cascade. Oral administration of (−)-gossypol significantly inhibited the growth of AI prostate cancer xenografts, representing a promising new regimen for the treatment of human hormone-refractory prostate cancer with Bcl-2 overexpression. Our data provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which will facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.  相似文献   

20.
《Autophagy》2013,9(4):558-560
Ceramide is a sphingolipid bioactive molecule that induces apoptosis and other forms of cell death, and triggers macroautophagy (referred to below as autophagy). Like amino acid starvation, ceramide triggers autophagy by interfering with the mTOR-signaling pathway, and by dissociating the Beclin 1:Bcl-2 complex in a c-Jun N-terminal kinase 1 (JNK1)-mediated Bcl-2 phosphorylation-dependent manner. Dissociation of the Beclin 1:Bcl-2 complex, and the subsequent stimulation of autophagy have been observed in various contexts in which the cellular level of long-chain ceramides was increased. It is notable that the conversion of short-chain ceramides (C2-ceramide and C6-ceramide) into long-chain ceramide via the activity of ceramide synthase is required to trigger autophagy. The dissociation of the Beclin 1:Bcl-2 complex has also been observed in response to tamoxifen and PDMP (an inhibitor of the enzyme that converts ceramide to glucosylceramide), drugs that increase the intracellular level of long-chain ceramides. However, and in contrast to starvation, overexpression of Bcl-2 does not blunt ceramide-induced autophagy. Whether this autophagy that is unchecked by forced dissociation of the Beclin 1:Bcl-2 complex is related to the ability of ceramide to trigger cell death remains an open question. More generally, the question of whether ceramide-induced autophagy is a dedicated cell death mechanism deserves closer scrutiny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号