首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Developmental variation in some Achnatherum species was evaluated for two kinds of groups, (1) species pairs that do or do not hybridize and (2) rare and common species. Variation was assessed in two different ways, one that captures developmental events expressed in an individual and one reflecting developmental events that are part of the information systems of a species. The former captures the effect of the environment on development; the latter expresses developmental variation without the information controlling ontogenetic events being filtered through the environment. Development variation is lower for species pair that hybridizes when the effect of development in an individual is expressed. When that variation is of the species information system, the non-hybridizing species pair shows a lower level of developmental variation, likely the effect of greater similarity between those species. It is lower for rare species when variation in development is that of the information system of a species. The lower level of developmental variation seen in species pairs that hybridize likely reflects the necessity of compatible developmental programs in order for a hybrid to appear. Lower variation in development in rare species is expected. Here, though, the lower variation is a property of the species and not of the environment.  相似文献   

2.
3.
Community ecology involves studying the interdependence of species with each other and their environment to predict their geographical distribution and abundance. Modern species distribution analyses characterise species‐environment dependency well, but offer only crude approximations of species interdependency. Typically, the dependency between focal species and other species is characterised using other species’ point occurrences as spatial covariates to constrain the focal species’ predicted range. This implicitly assumes that the strength of interdependency is homogeneous across space, which is not generally supported by analyses of species interactions. This discrepancy has an important bearing on the accuracy of inferences about habitat suitability for species. We introduce a framework that integrates principles from consumer–resource analyses, resource selection theory and species distribution modelling to enhance quantitative prediction of species geographical distributions. We show how to apply the framework using a case study of lynx and snowshoe hare interactions with each other and their environment. The analysis shows how the framework offers a spatially refined understanding of species distribution that is sensitive to nuances in biophysical attributes of the environment that determine the location and strength of species interactions.  相似文献   

4.
Question: Several mechanisms have been proposed that control the spatio‐temporal pattern of species coexistence. Among others, the species pool hypothesis states that the large‐scale species pool is an important factor in controlling small‐scale species richness through filtering of species that can persist within a species assemblage on the basis of their tolerance of the abiotic environment. Because of the process of environmental filtering, co‐occurring species that experience similar environmental conditions are likely to be more taxonomically similar than ecologically distant species. This is because, due to the conservatism of many species traits during evolutionary diversification, the ability of species to colonize the same ecological space is thought to depend at least partially on their taxonomic similarity. The question for this study is: Under the assumption of trait conservatism, does environmental filtering lead to nonrandom species assemblages with respect to their taxonomic structure? Methods: The significance of taxonomic filtering in regulating species coexistence is tested using data from 15 local species assemblages from the urban flora of Rome (Italy). To find out whether the taxonomic structure of the selected’ local’ species assemblages was significantly different from random, we used a Monte Carlo simulation in which for each local species assemblage, the actual taxonomic diversity was compared to the taxonomic diversity of 1000 virtual species lists of the same size extracted at random from a larger ‘regional’ species pool. Results: We found that in most cases the local species assemblages have a higher degree of taxonomic similarity than would be expected by chance showing a phenomenon of ‘species condensation’ in a small number of higher‐level taxa. Conclusions: Our observations support the species pool hypothesis and imply that environmental filtering is an important mechanism in shaping the taxonomic structure of species assemblages. Therefore, the incorporation of taxonomic diversity into landscape and community ecology may be beneficial for a better understanding of the processes that regulate species coexistence.  相似文献   

5.
Several extrinsic factors (area, native species diversity, human population size and latitude) significantly influence the non-native species richness of plants, over several orders of magnitude. Using several data sets, I examine the role of these factors in non-native species richness of several animal groups: birds, mammals and herptiles (amphibians, reptiles). I also examine if non-native species richness is correlated among these groups. I find, in agreement with Sax [2001, Journal of Biogeography 28: 139–150], that latitude is inversely correlated with non-native species richness of many groups. Once latitude is accounted for, area, human population size and native plant species richness are shown to be important extrinsic factors influencing non-native animal species. Of these extrinsic factors, human population size and native plant species richness are the best predictors of non-native animal species richness. Area, human population size and native plant species richness are highly intercorrelated, along with non-native species richness of all taxa. Indeed a factor analysis shows that a single multivariate axis explains over half of the variation for all variables among the groups. One reason for this covariation is that humans tend to most densely occupy the most productive and diverse habitats where native plant species richness is very high. It is thus difficult to disentangle the effects of human population size and native species richness on non-native species richness. However, it seems likely that these two factors may combine to increase non-native species richness in a synergistic way: high native species richness reflects greater habitat variety available for non-native species, and dense human populations (that preferentially occupy areas rich in native species) increase non-native species importation and disturbance of local habitats.  相似文献   

6.
Species are by definition different from each other. This fact favours ranking rather than additive indices. However, ecologists have measured species diversity in terms of species richness, or by combining species richness with the relative abundance of species within an area. Both methods raise problems: species richness treats all species equally, while relative abundance is not a fixed property of species but varies widely temporally and spatially, and requires a massive sampling effort. The functional aspect of species diversity measurement may be strengthened by incorporating differences between species such as body size as a component of diversity. An index of diversity derived from a measure of variation in body size among species is proposed for large grazing mammals. The proposed diversity index related positively to species abundance, indicating that the use of body size as a surrogate for diversity is adequate. Because the proposed index is based on presence or absence data, the expensive and time consuming counting of individuals per species in each sampling unit is not necessary.  相似文献   

7.
庐山蛾类区系研究   总被引:1,自引:0,他引:1  
方育卿 《动物学研究》1986,7(2):147-154
庐山,地处中亚热带北沿,北纬29.35°,东经115.59°,属亚热带东部季风区域。庐山襟江带湖,雨量充沛,植物种类繁多,种子植物有1800余种,隶属158科642属。因此,庐山蛾类也较丰富。笔者于1975年5月开始,对庐山蛾类进行了调查,共鉴定出蛾类455种。现将庐山蛾类区系报告如下。 区系分析 庐山蛾类已鉴定出32科340届455种。区系情况如表。 从表可以看出:  相似文献   

8.
依据2010年4月、7月和11月对浙江中部近海上升流海域进行的海洋调查资料,运用定量、定性方法,探讨了上升流对该海域浮游动物生态类群分布的影响.结果表明:3个季节共鉴定浮游动物64种,桡足类占主要优势,包括5个生态类群,分别是暖温带近海种、暖温带外海种、亚热带近海种、亚热带外海种和热带大洋种.在种类数组成上,春季以暖温带近海种为主,夏季则是亚热带近海种和亚热带外海种居多,秋季也是亚热带种居多,其中夏季暖温带种种类数要高于春季和秋季,这一现象与同时期东黄海沿海有所不同,主要是由于上升流将一些在海洋底部度夏的暖温种带至海洋表面造成的.此外,3个季节生态类群都是以近海种为主,表明沿岸流是影响这一海域的最主要的水团.在丰度组成上,4月暖温带近海种占总丰度的98.79%,7月暖温带近海种也是组成丰度的重要部分,10月则是亚热带近海种丰度最高.丰度组成所反映的规律与种类数组成规律一致.上升流的存在导致夏季近海暖温带种大量出现,是影响这一海域浮游动物生态类群组成的重要因素;受长江径流和椒江径流的影响,近海种成为主要生态类群,是这一海域浮游动物的一个重要的生态特征.  相似文献   

9.
Aim At macroecological scales, exotic species richness is frequently positively correlated with human population density. Such patterns are typically thought to arise because high human densities are associated with increased introduction effort and/or habitat modification and disturbance. Exotic and native species richness are also frequently positively correlated, although the causal mechanisms remain unclear. Energy availability frequently explains much of the variation in species richness and we test whether such species–energy relationships may influence the relationships of exotic species richness with human population density and native species richness. Location Great Britain. Methods We first investigate how spatial variation in the distributions of the 10 exotic bird species is related to energy availability. We then model exotic species richness using native avian species richness, human population density and energy availability as predictors. Species richness is modelled using two sets of models: one assumes independent errors and the other takes spatial correlation into account. Results The probability of each exotic species occurring, in a 10‐km quadrat, increases with energy availability. Exotic species richness is positively correlated with energy availability, human population density and native species richness in univariate tests. When taking energy availability into account, exotic species richness is negligibly influenced by human population density, but remains positively associated with native species richness. Main conclusions We provide one of the few demonstrations that energy availability exerts a strong positive influence on exotic species richness. Within our data, the positive relationship between exotic species richness and human population density probably arises because both variables increase with energy availability, and may be independent of the influence of human density on the probability of establishment. Positive correlations between exotic and native species richness remain when controlling for the influence of energy on species richness. The relevance of such a finding to the debate on the relationship between diversity and invasibility is discussed.  相似文献   

10.
Species: the concept, category and taxon   总被引:2,自引:0,他引:2  
The term species by itself is vague because it refers to the species concept, the species category and the species taxon, all of which are distinct although related to one another. The species concept is not primarily a part of systematics, but has always been an integral part of basic biological theory, It is based on evolutionary theory and applies only to sexually reproducing organisms. The species concept and the phyletic lineage concept are quite distinct although they are related to one another. The important aspect of the species concept is lack of gene flow between different species, and hence the defining criterion of the species is genetic isolation. The species concept is often considered as non‐dimensional, both in time and space. Species possess three different major properties, namely genetic isolation, reproductive isolation and ecological isolation; these properties evolve at different times and under the effect of different causes during the speciation process. Speciation requires an external isolating barrier during the initial allopatric phase in which genetic isolation evolves and must reach 100% efficiency. The subsequent sympatric phase of speciation occurs after the disappearance of the external isolating barrier when members of the two newly evolved species can interact with one another and exert mutual selective demands on one another. Much of the reproductive and ecological isolation evolves during this secondary sympatric phase. The species category is a rank in the taxonomic hierarchy and serves as the basis on which the diversity of organisms is described; it is not the same as the species concept. The species category applied to all organisms, sexually and asexually reproducing. The species taxon is the practical application of the species category in systematics with the recognition of species taxa requiring many arbitrary decisions. No single set of rules exist by which the species category can be applied to all organisms. Recognition of species taxa in asexually reproducing organisms is based on amount of variation and gaps in the variation of phenotypic features associated with ecological attributes of these organisms as compared with similar attributes in sympatric species taxa of sexually reproducing organisms. Species taxa are multidimensional in that they exist over space–time and often have fuzzy borders. Because recognition of species taxa, including those in sexually reproducing organisms, depends on many arbitrary decisions especially when dealing with broad geographical and temporal ranges, species taxa cannot be used as the foundation for developing and testing theoretical concepts in evolutionary theory which can only be done with the non‐dimensional species concept.  相似文献   

11.
《新西兰生态学杂志》2011,30(1):148-149
[First paragraph]Resource utilisation is usually viewed in terms of food species size (Schoener, 1974) with each species in a predator guild adapted to exploit a particular-sized species of prey. Large species of predators exploit large species of prey and vice versa. That is, each species in a guild is able to displace other species from a particular portion of the resource space by virtue of it being better adapted to exploit that particular species of prey in that resource space.  相似文献   

12.
Experiments where the diversity of species assemblage is manipulated are sometimes used to predict the consequences of species loss from real communities. However, their design corresponds to a random selection of the lost species. There are three main factors that limit species richness: harshness of the environment, competitive exclusion, and species pool limitation. Species loss is usually caused by increasing effects of these factors. In the first two cases, the species that are excluded are highly non-random subsets of the potential species set, and consequently, the predictions based on random selection of the lost species might be misleading. The data show that the least productive species are those being recently excluded from temperate grasslands and consequently, species loss is not connected with decline of productivity. The concurrent species loss in many communities, however, means also a reduction of the available diaspore pool on a landscape scale, and could result in increased species pool limitation in other communities.  相似文献   

13.
北京湿地维管植物区系研究   总被引:7,自引:0,他引:7  
记录了分布于北京地区的典型湿地维管植物266种7变种1变型,共274个分类群,隶属于58科144属。从种一级的水平对这274个分类群进行分析,可分为14个分布区类型,其中温带性质的种187种,为整个区系成分的主体,另有世界广布种45种,热带性质的种30种,中国特有种12种。就北京湿地维管植物区系特征而言,其种类组成与华北其他地区湿地存在着相似性,温带成分占优势地位,并存在一些古老孑遗种类及特有种。此外,还对区系成分中的受危种和外来种进行了讨论。  相似文献   

14.
白水江国家级自然保护区是甘肃省生物多样性最为丰富的地区,但是境内的藻类资源状况未见报道过。在实地调查取样的基础上,初步鉴定出白水江国家级自然保护区境内的藻类共4个门60属161种:硅藻门种类最多,有91种,占总种数的56.5%;绿藻门次之,有41种,占25.5%,其次是蓝藻门,有26种,占16.1%;裸藻门最少,共3种,占1.9%。从分布上看,铁楼的种类最多,有81种,然后依次是刘家坪有73种,邱家坝61种,石林谷48种,碧口47种。我们的名录对于了解该保护区的生物多样性提供了基础材料。  相似文献   

15.
The functioning of the vertebrate eye depends on its absolute size, which is presumably adapted to specific needs. Eye size variation in lidless and spectacled colubrid snakes was investigated, including 839 specimens belonging to 49 genera, 66 species and subspecies. Variations of adult eye diameters (EDs) in both absolute and relative terms between species were correlated with parameters reflecting behavioral ecology. In absolute terms, eye of arboreal species was larger than in terrestrial and semiaquatic species. For diurnal species, EDs of terrestrial species do not differ from semiaquatic species; for nocturnal species the ED of terrestrial species is larger than fossorial species but not different from semiaquatic species. In relative terms, ED did not differ significantly by habitat for diurnal species. Although the ED of terrestrial species is larger than fossorial species there were no differences for nocturnal species between semiaquatic and fossorial snakes. In contrast to other vertebrates studied to date, colubrid EDs in absolute and relative terms are larger in diurnal than in nocturnal species. These observations suggest that among colubrid snakes, eye size variation reflects adaptation to specific habitats, foraging strategies and daily activities, independently of phylogeny. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The subfamily Chloropinae comprises about 442 described species, with only one species recorded from the Brazilian Amazon. The genus Bricelochlorops Paganelli was represented by a unique species from Rio de Janeiro, Brazil. The species Urubambina rufa (Duda) is the only species of the genus Urubambina Paganelli and has been recorded only from Peru. A new species of Bricelochlorops, B. celutae sp. nov., is described here and Urubambina rufa is recorded for the first time in Brazil. Both species were collected in the state of Acre. A key to species of Bricelochlorops is provided.  相似文献   

17.
入侵物种空间分布建模的核心数据源来源于物种多样性采样(物种出现点和未出现点),然而,大多数入侵物种标本库只记录物种出现点样本信息,缺乏对未出现点(负样本)位置的记录。因此,生成有效的入侵物种虚拟负样本是建立物种空间分布模型的关键。本文提出了一种基于地理环境相似度的虚拟负样本生成方法。首先利用主成分分析(PCA)方法对地理环境原始变量进行线性相关性建模,基于提取的主成分,采用K-means算法对入侵物种样本进行聚类分析并计算各样本的地理环境相似度。在此基础上,通过建立基于主成分的入侵物种相似性度量与可信度计算框架来识别虚拟负样本。以长江经济带入侵物种一年蓬(Erigeron annuus)数据集为例,分析了整个区域虚拟负样本的可信度。结果表明,与空间随机采样和单类支持向量机采样相比,用本研究提出的方法生成的样本数据建立的logistic回归和支持向量机预测结果更优,验证了该方法的可行性与有效性。基于地理环境相似度的虚拟负样本抽样策略有助于解决由于随机采样而引起的误采样到潜在入侵点的难题,同时负样本的可信度能有助于识别不同等级的入侵物种适应区。  相似文献   

18.
An overview, based on written sources and personal observations, is presented of exploitation of living resources in and around the Dutch Wadden Sea during the past few centuries. It is concluded that before about 1900 exploitation was almost unrestricted. Exploitation of plants has been documented for saltmarshes and eelgrass beds. Fisheries have occurred for two species of hydroids, two species of polychaetes, one echinoderm species, at least seven species of molluscs, three species of crustaceans, and tens of species of fish. Hunting and egg collecting targeted almost all species of birds. Finally, two species of seals were exploited: information on exploitation of cetaceans is not available. Hence, it is likely that overexploitation may have been involved in the extirpation of several species. This supports an earlier suggestion that overexploitation played a part in the disappearance of at least 17 species from the Dutch Wadden Sea. This conclusion is confirmed by the observation that several extirpated species have returned after protective measures were introduced for the Dutch Wadden Sea area.  相似文献   

19.
中国台湾和大陆蹄盖蕨属植物的生物地理学比较   总被引:1,自引:0,他引:1  
王中仁 《植物研究》2001,21(2):231-238
蹄盖蕨属Athyrium Roth是个典型的东亚属,全世界估计约有160种,主要分布在亚洲东部的亚热带高山,少数在温带其他地区,中国有117种,是其分布中心。台湾和大陆的蹄盖蕨属植物关系尤为密切,是研究海峡两岸植物地理关系的一个很好的材料。台湾已知共计有蹄盖蕨类植物32种,包括狭义蹄盖蕨27种,介蕨2种,蛾眉蕨1种,假蹄盖蕨1种,假冷蕨1种,即使将待查实的4种蹄盖蕨除去,至少还有28种。其中除去7种大陆不产外, 21种均和大陆共有,占75%。况且,这7种与大陆种形态相近,是否同种异名、亚种或姊妹种关系还有待进一步研究;在台湾和大陆共有的16种狭义蹄盖蕨中有7种是台湾-西南间断分布。这不仅说明了台湾的蹄盖蕨属类植物和大陆的关系密切、有着共同的起源,而且说明台湾高地的植物区系和西南高地关系最为密切。运用生物系统学和分子系统学的方法研究和测定海峡两岸共有种种内、姊妹种或近缘种之间的遗传学关系(如:遗传一致度),进一步了解并量化台湾和大陆植物区系之间的历史和地理关系是必要的。  相似文献   

20.
不同栖息地状态下物种竞争模式及模拟研究与应用   总被引:5,自引:3,他引:2  
梁仁君  林振山  陈玲玲 《生态学报》2006,26(10):3308-3316
物种竞争是影响生态系统演化的重要生态过程之一.而物种在受人类影响出现不同程度毁坏的栖息地上的演化又是非常复杂的,因此研究物种演化对栖息地毁坏的响应是非常必要的.在Tilman研究工作的基础上,将竞争系数引入集合种群动力模式,建立了多物种集合种群竞争共存的数学模型,并对5-物种集合种群在不同栖息地状态下的竞争动态进行了计算机模拟研究.结果表明:(1)不同结构的群落(q值不同),物种之间的竞争排斥作用强度不同,优势物种明显的群落,物种之间的排斥强度大;(2)随着栖息地毁坏程度的增加,对优势物种的负面影响逐渐减小,而对弱势物种的负面影响逐渐增加;(3)随着栖息地恢复幅度的增加,优势物种和弱势物种之间的竞争越强烈,优势物种受到的竞争排斥加大,而弱势物种逐渐变强,出现了强者变弱、弱者变强的格局;(4)物种竞争排斥与共存受迁移扩散能力和竞争能力影响很大,竞争共存的条件是其竞争能力与扩散能力呈非线性负相关关系;(5)竞争共存的物种的强弱序列发生了变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号