首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.  相似文献   

2.
During the acute-phase reaction, SAA (serum amyloid A) replaces apoA-I (apolipoprotein A-I) as the major HDL (high-density lipoprotein)-associated apolipoprotein. A remarkable portion of SAA exists in a lipid-free/lipid-poor form and promotes ABCA1 (ATP-binding cassette transporter A1)-dependent cellular cholesterol efflux. In contrast with lipid-free apoA-I and apoE, lipid-free SAA was recently reported to mobilize SR-BI (scavenger receptor class B, type I)-dependent cellular cholesterol efflux [Van der Westhuyzen, Cai, de Beer and de Beer (2005) J. Biol. Chem. 280, 35890-35895]. This unique property could strongly affect cellular cholesterol mobilization during inflammation. However, in the present study, we show that overexpression of SR-BI in HEK-293 cells (human embryonic kidney cells) (devoid of ABCA1) failed to mobilize cholesterol to lipid-free or lipid-poor SAA. Only reconstituted vesicles containing phospholipids and SAA promoted SR-BI-mediated cholesterol efflux. Cholesterol efflux from HEK-293 and HEK-293[SR-BI] cells to lipid-free and lipid-poor SAA was minimal, while efficient efflux was observed from fibroblasts and CHO cells (Chinese-hamster ovary cells) both expressing functional ABCA1. Overexpression of SR-BI in CHO cells strongly attenuated cholesterol efflux to lipid-free SAA even in the presence of an SR-BI-blocking IgG. This implies that SR-BI attenuates ABCA1-mediated cholesterol efflux in a way that is not dependent on SR-BI-mediated re-uptake of cholesterol. The present in vitro experiments demonstrate that the lipidation status of SAA is a critical factor governing cholesterol acceptor properties of this amphipathic apolipoprotein. In addition, we demonstrate that SAA mediates cellular cholesterol efflux via the ABCA1 and/or SR-BI pathway in a similar way to apoA-I.  相似文献   

3.
Serum amyloid A (SAA) is an acute phase protein whose expression is markedly up-regulated during inflammation and infection. The physiological function of SAA is unclear. In this study, we reported that SAA promotes cellular cholesterol efflux mediated by scavenger receptor B-I (SR-BI). In Chinese hamster ovary cells, SAA promoted cellular cholesterol efflux in an SR-BI-dependent manner, whereas apoA-I did not. Similarly, SAA, but not apoA-I, promoted cholesterol efflux from HepG2 cells in an SR-BI-dependent manner as shown by using the SR-BI inhibitor BLT-1. When SAA was overexpressed in HepG2 cells using adenovirus-mediated gene transfer, the endogenously expressed SAA promoted SR-BI-dependent efflux. To assess the effect of SAA on SR-BI-mediated efflux to high density lipoprotein (HDL), we compared normal HDL, acute phase HDL (AP-HDL, prepared from mice injected with lipopolysaccharide), and AdSAA-HDL (HDL prepared from mice overexpressing SAA). Both AP-HDL and AdSAA-HDL promoted 2-fold greater cholesterol efflux than normal HDL. Lipid-free SAA was shown to also stimulate ABCA1-dependent cholesterol efflux in fibroblasts, in line with an earlier report (Stonik, J. A., Remaley, A. T., Demosky, S. J., Neufeld, E. B., Bocharov, A., and Brewer, H. B. (2004) Biochem. Biophys. Res. Commun. 321, 936-941). When added to cells together, SAA and HDL exerted a synergistic effect in promoting ABCA1-dependent efflux, suggesting that SAA may remodel HDL in a manner that releases apoA-I or other efficient ABCA1 ligands from HDL. SAA also facilitated efflux by a process that was independent of SR-BI and ABCA1. We conclude that the acute phase protein SAA plays an important role in HDL cholesterol metabolism by promoting cellular cholesterol efflux through a number of different efflux pathways.  相似文献   

4.
Serum amyloid A (SAA) is an acute phase protein that associates with HDL. In order to examine the role of SAA in reverse-cholesterol transport, lipid efflux was tested to SAA from HeLa cells before and after transfection with the ABCA1 transporter. ABCA1 expression increased efflux of cholesterol and phospholipid to SAA by 3-fold and 2-fold, respectively. In contrast to apoA-I, SAA also removed lipid without ABCA1; cholesterol efflux from control cells to SAA was 10-fold higher than for apoA-I. Furthermore, SAA effluxed cholesterol from Tangier disease fibroblasts and from cells after inhibition of ABCA1 by fixation with paraformaldehyde. In summary, SAA can act as a lipid acceptor for ABCA1, but unlike apoA-I, it can also efflux lipid without ABCA1, by most likely a detergent-like extraction process. These results suggest that SAA may play a unique role as an auxiliary lipid acceptor in the removal of lipid from sites of inflammation.  相似文献   

5.
In atherosclerosis, accumulation of cholesterol in macrophages may partially depend on its defective removal by high-density lipoproteins (HDL). We studied the proteolytic effect of cathepsins F, S, and K on HDL(3) and on lipid-free apoA-I, and its consequence on their function as inductors of cholesterol efflux from cholesterol-filled mouse peritoneal macrophages in vitro. Incubation of HDL(3) with cathepsin F or S, but not with cathepsin K, led to rapid loss of prebeta-HDL, and reduced cholesterol efflux by 50% in only 1min. Cathepsins F or K partially degraded lipid-free apoA-I and reduced its ability to induce cholesterol efflux, whereas cathepsin S totally degraded apoA-I, leading to complete loss of apoA-I cholesterol acceptor function. These results suggest that cathepsin-secreting cells induce rapid depletion of lipid-poor (prebeta-HDL) and lipid-free apoA-I and inhibit cellular cholesterol efflux, so tending to promote the formation and maintenance of foam cells in atherosclerotic lesions.  相似文献   

6.
The contribution of ABCA1-mediated efflux of cellular phospholipid (PL) and cholesterol to human apolipoprotein A-I (apoA-I) to the formation of pre beta 1-HDL (or lipid-poor apoA-I) is not well defined. To explore this issue, we characterized the nascent HDL particles formed when lipid-free apoA-I was incubated with fibroblasts in which expression of the ABCA1 was upregulated. After a 2 h incubation, the extracellular medium contained small apoA-I/PL particles (pre beta 1-HDL; diameter = 7.5 +/- 0.4 nm). The pre beta 1-HDL (or lipid-poor apoA-I) particles contained a single apoA-I molecule and three to four PL molecules and one to two cholesterol molecules. An apoA-I variant lacking the C-terminal alpha-helix did not form such particles when incubated with the cell, indicating that this helix is critical for the formation of lipid-poor apoA-I particles. These pre beta 1-HDL particles were as effective as lipid-free apoA-I molecules in mediating both the efflux of cellular lipids via ABCA1 and the formation of larger, discoidal HDL particles. In conclusion, pre beta 1-HDL is both a product and a substrate in the ABCA1-mediated reaction to efflux cellular PL and cholesterol to apoA-I. A monomeric apoA-I molecule associated with three to four PL molecules (i.e., lipid-poor apoA-I) has similar properties to the lipid-free apoA-I molecule.  相似文献   

7.
A fraction of plasma transthyretin (TTR) circulates in HDL through binding to apolipoprotein A-I (apoA-I). Moreover, TTR is able to cleave the C terminus of lipid-free apoA-I. In this study, we addressed the relevance of apoA-I cleavage by TTR in lipoprotein metabolism and in the formation of apoA-I amyloid fibrils. We determined that TTR may also cleave lipidated apoA-I, with cleavage being more effective in the lipid-poor prebeta-HDL subpopulation. Upon TTR cleavage, discoidal HDL particles displayed a reduced capacity to promote cholesterol efflux from cholesterol-loaded THP-1 macrophages. In similar assays, TTR-containing HDL from mice expressing human TTR in a TTR knockout background had a decreased ability to perform reverse cholesterol transport compared with similar particles from TTR knockout mice, reinforcing the notion that cleavage by TTR reduces the ability of apoA-I to promote cholesterol efflux. As amyloid deposits composed of N-terminal apoA-I fragments are common in the atherosclerotic intima, we assessed the impact of TTR cleavage on apoA-I aggregation and fibrillar growth. We determined that TTR-cleaved apoA-I has a high propensity to form aggregated particles and that it formed fibrils faster than full-length apoA-I, as assessed by electron microscopy. Our results show that apoA-I cleavage by TTR may affect HDL biology and the development of atherosclerosis by reducing cholesterol efflux and increasing the apoA-I amyloidogenic potential.  相似文献   

8.
Recent studies demonstrate that HDL’s ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL’s major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL’s cholesterol efflux capacity. We therefore tested the hypothesis that HDL’s impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL’s cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL’s protein cargo.  相似文献   

9.
HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL(2) and HDL(3) subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL(3) than in HDL(2). Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects.  相似文献   

10.
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.  相似文献   

11.
Serum amyloid A (SAA) is an acute-phase protein mainly associated with HDL. To study the role of SAA in mediating changes in HDL composition and metabolism during inflammation, we generated mice in which the two major acute-phase SAA isoforms, SAA1.1 and SAA2.1, were deleted [SAA knockout (SAAKO) mice], and induced an acute phase to compare lipid and apolipoprotein parameters between wild-type (WT) and SAAKO mice. Our data indicate that SAA does not affect apolipoprotein A-I (apoA-I) levels or clearance under steady-state conditions. HDL and plasma triglyceride levels following lipopolysaccharide administration, as well as the decline in liver expression of apoA-I and apoA-II, did not differ between both groups of mice. The expected size increase of WT acute-phase HDL was surprisingly also seen in SAAKO acute-phase HDL despite the absence of SAA. HDLs from both mice showed increased phospholipid and unesterified cholesterol content during the acute phase. We therefore conclude that in the mouse, SAA does not impact HDL levels, apoA-I clearance, or HDL size during the acute phase and that the increased size of acute-phase HDL in mice is associated with an increased content of surface lipids, particularly phospholipids, and not surface proteins. These data need to be transferred to humans with caution due to differences in apoA-I structure and remodeling functions.  相似文献   

12.
Serum amyloid A (SAA) is an acute phase protein of unknown function that is involved in systemic amyloidosis and may also be involved in atherogenesis. The precise role of SAA in these processes has not been established. SAA circulates in plasma bound to high density lipoprotein-3 (HDL3). The pathway for the production of SAA-containing HDL is not known. To test whether apolipoprotein (apo)A-I-HDL is required in the production of SAA-HDL, we analyzed the lipopolysaccharide (LPS)-induced changes in apoA-I+/+ and apoA-I-/- mice. In apoA-I+/+ mice, after injection of LPS, remodeling of HDL occurred: total cholesterol increased and apoA-I decreased slightly and shifted to lighter density. Dense (density of HDL3) but large (size of HDL2 ) SAA-containing particles were formed. Upon fast phase liquid chromatography fractionation of plasma, >90% of SAA eluted with HDL that was enriched in cholesterol and phospholipid and shifted "leftward" to larger particles. Non-denaturing immunoprecipitation with anti-mouse apoA-I precipitated all of the apoA-I but not all of the SAA, confirming the presence of SAA-HDL devoid of apoA-I. In the apoA-I-/- mice, which normally have very low plasma lipid levels, LPS injection resulted in significantly increased total and HDL cholesterol. Greater than 90% of the SAA was lipid associated and was found on dense but large, spherical HDL particles essentially devoid of other apolipoproteins.We conclude that serum amyloid A (SAA) is able to sequester lipid, forming dense but large HDL particles with or without apoA-I or other apolipoproteins. The capacity to isolate lipoprotein particles containing SAA as the predominant or only apolipoprotein provides an important system to further explore the biological function of SAA.  相似文献   

13.
HDL (high-density lipoproteins) remove cell cholesterol and protect from atherosclerosis. The major HDL protein is apoA-I (apolipoprotein A-I). Most plasma apoA-I circulates in lipoproteins, yet ~5% forms monomeric lipid-poor/free species. This metabolically active species is a primary cholesterol acceptor and is central to HDL biogenesis. Structural properties of lipid-poor apoA-I are unclear due to difficulties in isolating this transient species. We used thermal denaturation of human HDL to produce lipid-poor apoA-I. Analysis of the isolated lipid-poor fraction showed a protein/lipid weight ratio of 3:1, with apoA-I, PC (phosphatidylcholine) and CE (cholesterol ester) at approximate molar ratios of 1:8:1. Compared with lipid-free apoA-I, lipid-poor apoA-I showed slightly altered secondary structure and aromatic packing, reduced thermodynamic stability, lower self-associating propensity, increased adsorption to phospholipid surface and comparable ability to remodel phospholipids and form reconstituted HDL. Lipid-poor apoA-I can be formed by heating of either plasma or reconstituted HDL. We propose the first structural model of lipid-poor apoA-I which corroborates its distinct biophysical properties and postulates the lipid-induced ordering of the labile C-terminal region. In summary, HDL heating produces folded functional monomolecular lipid-poor apoA-I that is distinct from lipid-free apoA-I. Increased adsorption to phospholipid surface and reduced C-terminal disorder may help direct lipid-poor apoA-I towards HDL biogenesis.  相似文献   

14.
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.  相似文献   

15.
Plasma concentrations of high density lipoprotein (HDL) cholesterol and its major apolipoprotein (apo)A-I are significantly decreased in inflammatory states. Plasma levels of the serum amyloid A (SAA) protein increase markedly during the acute phase response and are elevated in many chronic inflammatory states. Because SAA is associated with HDL and has been shown to be capable of displacing apoA-I from HDL in vitro, it is believed that expression of SAA is the primary cause of the reduced HDL cholesterol and apoA-I in inflammatory states. In order to directly test this hypothesis, we constructed recombinant adenoviruses expressing the murine SAA and human SAA1 genes (the major acute phase SAA proteins in both species). These recombinant adenoviruses were injected intravenously into wild-type and human apoA-I transgenic mice and the effects of SAA expression on HDL cholesterol and apoA-I were compared with mice injected with a control adenovirus. Plasma levels of SAA were comparable to those seen in the acute phase response in mice and humans. However, despite high plasma levels of murine or human SAA, no significant changes in HDL cholesterol or apoA-I levels were observed. SAA was found associated with HDL but did not specifically alter the cholesterol or human apoA-I distribution among lipoproteins. In summary, high plasma levels of SAA in the absence of a generalized acute phase response did not result in reduction of HDL cholesterol or apoA-I in mice, suggesting that there are components of the acute phase response other than SAA expression that may directly influence HDL metabolism.  相似文献   

16.
The ATP-binding cassette transporter A1 (ABCA1) mediates the efflux of cellular unesterified cholesterol and phospholipid to lipid-poor apolipoprotein A-I. Chymase, a protease secreted by mast cells, selectively cleaves pre-beta-migrating particles from high density lipoprotein (HDL)(3) and reduces the efflux of cholesterol from macrophages. To evaluate whether this effect is the result of reduction of ABCA1-dependent or -independent pathways of cholesterol efflux, in this study we examined the efflux of cholesterol to preparations of chymase-treated HDL(3) in two types of cell: 1) in J774 murine macrophages endogenously expressing low levels of scavenger receptor class B, type I (SR-BI), and high levels of ABCA1 upon treatment with cAMP; and 2) in Fu5AH rat hepatoma cells endogenously expressing high levels of the SR-BI and low levels of ABCA1. Treatment of HDL(3) with the human chymase resulted in rapid depletion of pre-beta-HDL and a concomitant decrease in the efflux of cholesterol and phospholipid (2-fold and 3-fold, respectively) from the ABCA1-expressing J774 cells. In contrast, efflux of free cholesterol from Fu5AH to chymase-treated and to untreated HDL(3) was similar. Incubation of HDL(3) with phospholipid transfer protein led to an increase in pre-beta-HDL contents as well as in ABCA1-mediated cholesterol efflux. A decreased cholesterol efflux to untreated HDL(3) but not to chymase-treated HDL(3) was observed in ABCA1-expressing J774 with probucol, an inhibitor of cholesterol efflux to lipid-poor apoA-I. Similar results were obtained using brefeldin and gliburide, two inhibitors of ABCA1-mediated efflux. These results indicate that chymase treatment of HDL(3) specifically impairs the ABCA1-dependent pathway without influencing either aqueous or SR-BI-facilitated diffusion and that this effect is caused by depletion of lipid-poor pre-beta-migrating particles in HDL(3). Our results are compatible with the view that HDL(3) promotes ABCA1-mediated lipid efflux entirely through its lipid-poor fraction with pre-beta mobility.  相似文献   

17.
Cavigiolio G  Shao B  Geier EG  Ren G  Heinecke JW  Oda MN 《Biochemistry》2008,47(16):4770-4779
High-density lipoprotein (HDL) mediates reverse cholesterol transport (RCT), wherein excess cholesterol is conveyed from peripheral tissues to the liver and steroidogenic organs. During this process HDL continually transitions between subclass sizes, each with unique biological activities. For instance, RCT is initiated by the interaction of lipid-free/lipid-poor apolipoprotein A-I (apoA-I) with ABCA1, a membrane-associated lipid transporter, to form nascent HDL. Because nearly all circulating apoA-I is lipid-bound, the source of lipid-free/lipid-poor apoA-I is unclear. Lecithin:cholesterol acyltransferase (LCAT) then drives the conversion of nascent HDL to spherical HDL by catalyzing cholesterol esterification, an essential step in RCT. To investigate the relationship between HDL particle size and events critical to RCT such as LCAT activation and lipid-free apoA-I production for ABCA1 interaction, we reconstituted five subclasses of HDL particles (rHDL of 7.8, 8.4, 9.6, 12.2, and 17.0 nm in diameter, respectively) using various molar ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, free cholesterol, and apoA-I. Kinetic analyses of this comprehensive array of rHDL particles suggest that apoA-I stoichiometry in rHDL is a critical factor governing LCAT activation. Electron microscopy revealed specific morphological differences in the HDL subclasses that may affect functionality. Furthermore, stability measurements demonstrated that the previously uncharacterized 8.4 nm rHDL particles rapidly convert to 7.8 nm particles, concomitant with the dissociation of lipid-free/lipid-poor apoA-I. Thus, lipid-free/lipid-poor apoA-I generated by the remodeling of HDL may be an essential intermediate in RCT and HDL's in vivo maturation.  相似文献   

18.
19.
The main antiatherogenic function of HDL is to promote the efflux of cholesterol from peripheral cells and transport it to the liver for excretion in a process termed reverse cholesterol transport. The aim of this study was to evaluate the cholesterol efflux capacity in low- and high-HDL subjects by utilizing monocytes and serum from 18 low-HDL and 15 high-HDL subjects. Low and high HDL levels were defined, respectively, as HDL < or =10(th) and HDL > or =90(th) Finnish age/sex-specific percentile. Cholesterol efflux from [(3)H]cholesterol-oleate-acetyl-LDL-loaded monocyte-derived macrophages to standard apolipoprotein A-I (apoA-I), HDL(2), and serum was measured. In addition, cholesterol efflux from acetyl-LDL-loaded human THP-1 macrophages to individual sera (0.5%) derived from the study subjects was evaluated. Cholesterol efflux to apoA-I, HDL(2), and serum from macrophage foam cells derived from low- and high-HDL subjects was similar. The relative ABCA1 and ABCG1 mRNA expression levels in unloaded macrophages, as well as their protein levels in loaded macrophage foam cells, were similar in the two study groups. Cholesterol efflux from THP-1 foam cells to serum recovered from high-HDL subjects was slightly higher than that to serum from low-HDL subjects (P = 0.046). Cholesterol efflux from THP-1 macrophages to serum from study subjects correlated with serum apoB (P = 0.033), apoA-I (P = 0.004), apoA-II (P < 0.0001), and the percentage of apoA-I present in the form of prebeta-HDL (P = 0.0001). Our data reveal that macrophages isolated from either low- or high-HDL subjects display similar cholesterol efflux capacity to exogenous acceptors. However, sera from low-HDL subjects have poorer cholesterol acceptor ability as compared with sera from high-HDL subjects.  相似文献   

20.
Serum amyloid A (SAA) is an amphiphilic helical protein that is found associated with plasma HDL in various pathological conditions, such as acute or chronic inflammation. Cellular lipid release and generation of HDL by this protein were investigated, in comparison with the reactions by apolipoprotein A-I (apoA-I) and several types of cells that appear with various specific profiles of cholesterol and phospholipid release. SAA mediated cellular lipid release from these cells with the same profile as apoA-I. Upregulation of cellular ABCA1 protein by liver X receptor/retinoid X receptor agonists resulted in an increase of cellular lipid release by apoA-I and SAA. SAA reacted with the HEK293-derived clones that stably express human ABCA1 (293/2c) or ABCA7 (293/6c) to generate cholesterol-containing HDL in a similar manner to apoA-I. Dibutyryl cyclic AMP and phorbol 12-myristate 13-acetate, which differentiate apoA-I-mediated cellular lipid release between 293/2c and 293/6c, also exhibited the same differential effects on the SAA-mediated reactions. No evidence was found for the ABCA1/ABCA7-independent lipid release by SAA. Characterization of physicochemical properties of the HDL revealed that SAA-generated HDL particles had higher density, larger diameter, and slower electrophoretic mobility than those generated by apoA-I. These results demonstrate that SAA generates cholesterol-containing HDL directly with cellular lipid and that the reaction is mediated by ABCA1 and ABCA7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号