首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arrestins regulate the signaling and endocytosis of many G protein-coupled receptors (GPCRs). It has been suggested that the functions of arrestins are dependent upon both the number and pattern of phosphorylation sites present in an activated GPCR. However, little is currently known about the relationships between the sites of receptor phosphorylation, the resulting affinities of arrestin binding, and the ensuing mechanisms of receptor regulation for any given GPCR. To investigate these interactions, we used an active truncated mutant of arrestin (amino acids 1-382) and phosphorylation-deficient mutants of the N-formyl peptide receptor (FPR). In contrast to results with wild type arrestins, the truncated arrestin-2 protein bound to the unphosphorylated wild type FPR, although with lower affinity and a low affinity for the agonist as revealed by competition studies with heterotrimeric G proteins. Using FPR mutants, we further demonstrated that the phosphorylation status of serines and threonines between residues 328-332 is a key determinant that regulates the affinity of the FPR for arrestins. Furthermore, we found that the phosphorylation status of serine and threonine residues between amino acids 334 and 339 regulates the affinity of the receptor for agonist when arrestin is bound. These results suggest that the agonist affinity state of the receptor is principally regulated by phosphorylation at specific sites and is not simply a consequence of arrestin binding as has previously been proposed. Furthermore, this is the first demonstration that agonist affinity of a GPCR and the affinity of arrestin binding to the phosphorylated receptor are regulated by distinct receptor phosphodomains.  相似文献   

2.
Following activation by ligand, the N-formyl peptide receptor (FPR) undergoes processing events initiated by phosphorylation that lead to receptor desensitization and internalization. Our previous results have shown that FPR internalization can occur in the absence of receptor desensitization, suggesting that FPR desensitization and internalization are controlled by distinct mechanisms. More recently, we have provided evidence that internalization of the FPR occurs via a mechanism that is independent of the actions of arrestin, dynamin, and clathrin. In the present report, we demonstrate that stimulation of the FPR with agonist leads to a significant translocation of arrestin-2 from the cytosol to the membrane. Fluorescence microscopy revealed that the translocated arrestin-2 is highly colocalized with the ligand-bound FPR. A D71A mutant FPR, which does not undergo activation or phosphorylation in response to ligand, did not colocalize with arrestin-2. Surprisingly, an R123G mutant FPR, which does not bind G protein but does become phosphorylated and subsequently internalized, also did not bind arrestin. These results indicate that arrestin binding is not required for FPR internalization and demonstrate for the first time that a common motif, the conserved "DRY" domain of G protein-coupled receptors, is essential for phosphorylation-dependent arrestin binding, as well as G protein activation.  相似文献   

3.
It is now well accepted that G protein-coupled receptors activated by agonist binding become targets for phosphorylation, leading to desensitization of the receptor. Using a series of phosphorylation deficient mutants of the N-formyl peptide receptor (FPR), we have explored the role of phosphorylation on the ability of the receptor to interact with G proteins and arrestins. Using a fluorometric assay in conjunction with solubilized receptors, we demonstrate that phosphorylation of the wild type FPR lowers its affinity for G protein, whereas mutant receptors lacking four potential phosphorylation sites retain their ability to couple to G protein. Phosphorylated mutant receptors lacking only two potential phosphorylation sites are again unable to couple to G protein. Furthermore, whereas stimulated wild type FPR in whole cells colocalizes with arrestin-2, and the solubilized, phosphorylated FPR binds arrestin-2, the stimulated receptors lacking four potential phosphorylation sites display no interaction with arrestin-2. However, the mutant receptors lacking only two potential phosphorylation sites are restored in their ability to bind and colocalize with arrestin-2. Thus, there is a submaximal threshold of FPR phosphorylation that simultaneously results in an inhibition of G protein binding and an induction of arrestin binding. These results are the first to demonstrate that less than maximal levels of receptor phosphorylation can block G protein binding, independent of arrestin binding. We therefore propose that phosphorylation alone may be sufficient to desensitize the FPR in vivo, raising the possibility that for certain G protein-coupled receptors, desensitization may not be the primary function of arrestin.  相似文献   

4.
G protein-coupled receptors (GPCRs) must constantly compete for interactions with G proteins, kinases, and arrestins. To evaluate the interactions of these proteins with GPCRs in greater detail, we generated a fusion protein between the N-formyl peptide receptor and the G(alpha)(i2) protein. The functional capabilities of this chimeric protein were determined both in vivo, in stably transfected U937 cells, and in vitro, using a novel reconstitution system of solubilized components. The chimeric protein exhibited a cellular ligand binding affinity indistinguishable from that of the wild-type receptor and existed as a complex, when solubilized, containing betagamma subunits, as demonstrated by sucrose density sedimentation. The chimeric protein mobilized intracellular calcium and desensitized normally in response to agonist. Furthermore, the chimeric receptor was internalized and recycled at rates similar to those of the wild-type FPR. Confocal fluorescence microscopy revealed that internalized chimeric receptors, as identified with fluorescent ligand, colocalized with arrestin, as well as G protein, unlike wild-type receptors. Soluble reconstitution experiments demonstrated that the chimeric receptor, even in the phosphorylated state, existed as a high ligand affinity G protein complex, in the absence of exogenous G protein. This interaction was only partially prevented through the addition of arrestins. Furthermore, our results demonstrate that the GTP-bound state of the G protein alpha subunit displays no detectable affinity for the receptor. Together, these results indicate that complex interactions exist between GPCRs, in their unphosphorylated and phosphorylated states, G proteins, and arrestins, which result in the highly regulated control of GPCR function.  相似文献   

5.
According to the two-state model of G-protein-coupled receptor (GPCR) activation, GPCRs isomerize from an inactive (R) state to an active (R*) state. In the R* state, GPCRs activate G-proteins. Agonist-independent R/R* isomerization is referred to as constitutive activity and results in an increase in basal G-protein activity, i.e. GDP/GTP exchange. Agonists stabilize the R* state and further increase, whereas inverse agonists stabilize the R state and decrease, basal G-protein activity. Constitutive activity is observed in numerous wild-type GPCRs and disease-causing GPCR mutants with increased constitutive activity. The human formyl peptide receptor (FPR) exists in several isoforms (FPR-26, FPR-98 and FPR-G6) and activates chemotaxis and cytotoxic cell functions of phagocytes through G(i)-proteins. Studies in HL-60 leukemia cell membranes demonstrated inhibitory effects of Na(+) and pertussis toxin on basal G(i)-protein activity, suggesting that the FPR is constitutively active. However, since HL-60 cells express several constitutively active chemoattractant receptors, analysis of constitutive FPR activity was difficult. Sf9 insect cells do not express chemoattractant receptors and G(i)-proteins and provide a sensitive reconstitution system for FPR/G(i)-protein coupling. Such expression studies showed that FPR-26 is much more constitutively active than FPR-98 and FPR-G6 as assessed by the relative inhibitory effects of Na(+) and of the inverse agonist cyclosporin H on basal G(i)-protein activity. Site-directed mutagenesis studies suggest that the E346A exchange in the C-terminus critically determines dimerization and constitutive activity of FPR. Moreover, N-glycosylation of the N-terminus seems to be important for constitutive FPR activity. Finally, we discuss some future directions of research.  相似文献   

6.
The phosphorylation-dependent binding of arrestins to cytoplasmic domains of G protein-coupled receptors (GPCRs) is thought to be a crucial step in receptor desensitization. In some GPCR systems, arrestins have also been demonstrated to be involved in receptor internalization, resensitization, and the activation of signaling cascades. The objective of the current study was to examine binding interactions of members of the arrestin family with the formyl peptide receptor (FPR), a member of the GPCR family of receptors. Peptides representing the unphosphorylated and phosphorylated carboxyl terminus of the FPR were synthesized and bound to polystyrene beads via a biotin/streptavidin interaction. Using fluorescein-conjugated arrestins, binding interactions between arrestins and the bead-bound FPR carboxyl terminus were analyzed by flow cytometry. Arrestin-2 and arrestin-3 bound to the FPR carboxyl-terminal peptide in a phosphorylation-dependent manner, with K(d) values in the micromolar range. Binding of visual arrestin, which binds rhodopsin with high selectivity, was not observed. Arrestin-2-(1--382) and arrestin-3-(1--393), truncated mutant forms of arrestin that display phosphorylation-independent binding to intact receptors, were also observed to bind the bead-bound FPR terminus in a phosphorylation-dependent manner, but with much greater affinity than the full-length arrestins, yielding K(d) values in the 5--50 nm range. Two additional arrestin mutants, which are full-length but display phosphorylation-independent binding to intact GPCRs, were evaluated for their binding affinity to the FPR carboxyl terminus. Whereas the single point mutant, arrestin-2 R169E, displayed an affinity similar to that of the full-length arrestins, the triple point mutant, arrestin-2 I386A/V387A/F388A, displayed an affinity more similar to that of the truncated forms of arrestin. The results suggest that the carboxyl terminus of arrestin is a critical determinant in regulating the binding affinity of arrestin for the phosphorylated domains of GPCRs.  相似文献   

7.
Multiple activation steps of the N-formyl peptide receptor   总被引:1,自引:0,他引:1  
The human N-formyl peptide receptor (FPR) is representative of a growing family of G protein-coupled receptors (GPCR) that respond to chemokines and chemoattractants. Despite the importance of this receptor class to immune function, relatively little is known about the molecular mechanisms involved in their activation. To reveal steps required for the activation of GPCR receptors, we utilized mutants of the FPR which have previously been shown to be incapable of binding and activating G proteins. For this study, the FPR mutants were expressed in human myeloid U937 cells and characterized for functions in addition to G protein coupling, such as receptor phosphorylation and ligand-induced receptor internalization. The results demonstrated that one of the mutants, R123G, though being unable to activate G protein, was capable of undergoing ligand-induced phosphorylation as well as internalization. Receptor internalization was monitored by following the fate of the ligand as well as by directly monitoring the fate of the receptor. The results with the R123G mutant were in contrast to those obtained for mutants D71A and R309G/E310A/R311G which, though being expressed at the cell surface and binding ligand, were incapable of being phosphorylated or internalized upon agonist stimulation. These results suggest that following ligand binding at least two "steps" are required for full activation of the wild-type FPR. That these observations may be of more general importance in GPCR-mediated signaling is suggested by the highly conserved nature of the mutants studied: D71, R123, and the site represented by amino acids 309-311 are very highly conserved throughout the entire superfamily of G protein-coupled receptors. Models of receptor activation based on the observed results are discussed.  相似文献   

8.
G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) activate numerous cellular signals through the combined actions of G proteins, GPCR kinases, and arrestins. Although arrestins have traditionally been thought of as mediating GPCR desensitization, they have now been shown to play important roles in the internalization, trafficking, and signaling of many GPCRs. We demonstrate that in cells devoid of arrestins, the stimulation of numerous GPCRs including the N-formyl peptide receptor (FPR) initiates rapid cell rounding, annexin V positivity, and caspase activation followed by cell death. The apoptotic response is initiated by G protein signaling and involves activation of phosphoinositide 3-kinase, mitogen-activated protein kinases, and c-Src resulting in cytochrome c release from mitochondria and ultimately caspase 9 and caspase 3 activation. Reconstitution with either arrestin-2 or arrestin-3 is completely sufficient to prevent FPR-mediated apoptosis. Surprisingly, a non-desensitizing and non-internalizing mutant of the FPR is unable to initiate apoptosis, indicating that receptor phosphorylation and internalization, but not solely chronic activation due to a lack of desensitization, are critical determinants for the induction of apoptosis by the FPR. We further demonstrate that this response is not unique to the FPR with numerous additional GPCRs, including the V2 vasopressin, angiotensin II (type 1A), and CXCR2 receptors, capable of initiating apoptosis upon stimulation, whereas GPCRs such as the beta(2)-adrenergic receptor and CXCR4 are not capable of initiating apoptotic signaling. These data demonstrate for the first time that arrestins play a critical and completely unexpected role in the suppression GPCR-mediated apoptosis, which we show is a common consequence of GPCR-mediated cellular activation in the absence of arrestins.  相似文献   

9.
Arrestins were originally described as proteins recruited to ligand-activated, phosphorylated G protein-coupled receptors (GPCRs) to attenuate G protein-mediated signaling. It was later revealed that arrestins also mediate GPCR internalization and recruit a number of signaling proteins including, but not limited to, Src family kinases, ERK1/2, and JNK3. GPCR-arrestin binding and trafficking control the spatial and temporal activity of these multi-protein complexes. In previous reports, we concluded that N-formyl peptide receptor (FPR)-mediated apoptosis, which occurs upon receptor stimulation in the absence of arrestins, is associated with FPR accumulation in perinuclear recycling endosomes. Under these conditions, inhibition of Src kinase and ERK1/2 prevented FPR-mediated apoptosis. To better understand the role of Src kinase in this process, in the current study we employed a previously described arrestin-2 (arr2) mutant deficient in Src kinase binding (arr2-P91G/P121E). Unlike wild type arrestin, arr2-P91G/P121E did not inhibit FPR-mediated apoptosis, suggesting that Src binding to arrestin-2 prevents apoptotic signaling. However, in cells expressing this mutant, FPR-mediated apoptosis was still blocked by inhibition of Src kinase activity, suggesting that activation of Src independent of arrestin-2 binding is involved in FPR-mediated apoptosis. Finally, while Src kinase inhibition prevented FPR-mediated-apoptosis in the presence of arr2-P91G/P121E, it did not prevent FPR-arr2-P91G/P121E accumulation in the perinuclear recycling endosome. On the contrary, inhibition of Src kinase activity mediated the accumulation of activated FPR-wild type arrestin-2 in recycling endosomes without initiating FPR-mediated apoptosis. Based on these observations, we conclude that Src kinase has two independent roles following FPR activation that regulate both FPR-arrestin-2 signaling and trafficking.  相似文献   

10.
The non-visual arrestins, arrestin-2 and arrestin-3, belong to a small family of multifunctional cytosolic proteins. Non-visual arrestins interact with hundreds of G protein-coupled receptors (GPCRs) and regulate GPCR desensitization by binding active phosphorylated GPCRs and uncoupling them from heterotrimeric G proteins. Recently, non-visual arrestins have been shown to mediate G protein-independent signaling by serving as adaptors and scaffolds that assemble multiprotein complexes. By recruiting various partners, including trafficking and signaling proteins, directly to GPCRs, non-visual arrestins connect activated receptors to diverse signaling pathways. To investigate arrestin-mediated signaling, a structural understanding of arrestin activation and interaction with GPCRs is essential. Here we identified global and local conformational changes in the non-visual arrestins upon binding to the model GPCR rhodopsin. To detect conformational changes, pairs of spin labels were introduced into arrestin-2 and arrestin-3, and the interspin distances in the absence and presence of the receptor were measured by double electron electron resonance spectroscopy. Our data indicate that both non-visual arrestins undergo several conformational changes similar to arrestin-1, including the finger loop moving toward the predicted location of the receptor in the complex as well as the C-tail release upon receptor binding. The arrestin-2 results also suggest that there is no clam shell-like closure of the N- and C-domains and that the loop containing residue 136 (homolog of 139 in arrestin-1) has high flexibility in both free and receptor-bound states.  相似文献   

11.
Milano SK  Pace HC  Kim YM  Brenner C  Benovic JL 《Biochemistry》2002,41(10):3321-3328
Arrestin binding to activated, phosphorylated G protein-coupled receptors (GPCRs) represents a critical step in regulation of light- and hormone-dependent signaling. Nonvisual arrestins, such as arrestin-2, interact with multiple proteins for the purpose of propagating and terminating signaling events. Using a combination of X-ray crystallography, molecular modeling, mutagenesis, and binding analysis, we reveal structural features of arrestin-2 that may enable simultaneous binding to phosphorylated receptor, SH3 domains, phosphoinositides, and beta-adaptin. The structure of full-length arrestin-2 thus provides a uniquely oriented scaffold for assembly of multiple, diverse molecules involved in GPCR signal transduction.  相似文献   

12.
Receptor based signaling mechanisms are the primary source of cellular regulation. The superfamily of G protein-coupled receptors is the largest and most ubiquitous of the receptor mediated processes. We describe here the analysis in real-time of the assembly and disassembly of soluble G protein-coupled receptor-G protein complexes. A fluorometric method was utilized to determine the dissociation of a fluorescent ligand from the receptor solubilized in detergent. The ligand dissociation rate differs between a receptor coupled to a G protein and the receptor alone. By observing the sensitivity of the dissociation of a fluorescent ligand to the presence of guanine nucleotide, we have shown a time- and concentration-dependent reconstitution of the N-formyl peptide receptor with endogenous G proteins. Furthermore, after the clearing of endogenous G proteins, purified Galpha subunits premixed with bovine brain Gbetagamma subunits were also able to reconstitute with the solubilized receptors. The solubilized N-formyl peptide receptor and Galpha(i3) protein interacted with an affinity of approximately 10(-6) m with other alpha subunits exhibiting lower affinities (Galpha(i3) > Galpha(i2) > Galpha(i1) Galpha(o)). The N-formyl peptide receptor-G protein interactions were inhibited by peptides corresponding to the Galpha(i) C-terminal regions, by Galpha(i) mAbs, and by a truncated form of arrestin-3. This system should prove useful for the analysis of the specificity of receptor-G protein interactions, as well as for the elucidation and characterization of receptor molecular assemblies and signal transduction complexes.  相似文献   

13.
After stimulation by ligand, most G protein-coupled receptors (GPCRs) undergo rapid phosphorylation, followed by desensitization and internalization. In the case of the N-formyl peptide receptor (FPR), these latter two processing steps have been shown to be entirely dependent on phosphorylation of the receptor's carboxy terminus. We have previously demonstrated that FPR internalization can occur in the absence of receptor desensitization, indicating that FPR desensitization and internalization are regulated differentially. In this study, we have investigated whether human chemoattractant receptors internalize via clathrin-coated pits. Internalization of the FPR transiently expressed in HEK 293 cells was shown to be dependent upon receptor phosphorylation. Despite this, internalization of the FPR, as well as the C5a receptor, was demonstrated to be independent of the actions of arrestin, dynamin, and clathrin. In addition, we utilized fluorescence microscopy to visualize the FPR and beta(2)-adrenergic receptor as they internalized in the same cell, revealing distinct sites of internalization. Last, we found that a nonphosphorylatable mutant of the FPR, unable to internalize, was competent to activate p44/42 MAP kinase. Together, these results demonstrate not only that the FPR internalizes via an arrestin-, dynamin-, and clathrin-independent pathway but also that signal transduction to MAP kinases occurs in an internalization-independent manner.  相似文献   

14.
The human formyl peptide receptor (FPR) is a prototypical G(i) protein-coupled receptor, but little is known about quantitative aspects of FPR-G(i) protein coupling. To address this issue, we fused the FPR to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) and expressed the fusion proteins in Sf9 insect cells. Fusion of a receptor to Galpha ensures a defined 1:1 stoichiometry of the signaling partners. By analyzing high affinity agonist binding, the kinetics of agonist- and inverse agonist-regulated guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding and GTP hydrolysis and photolabeling of Galpha, we demonstrate highly efficient coupling of the FPR to fused G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) without cross-talk of the receptor to insect cell G proteins. The FPR displayed high constitutive activity when coupled to all three G(i)alpha isoforms. The K(d) values of high affinity agonist binding were approximately 100-fold lower than the EC(50) (concentration that gives half-maximal stimulation) values of agonist for GTPase activation. Based on the B(max) values of agonist saturation binding and ligand-regulated GTPgammaS binding, it was previously proposed that the FPR activates G proteins catalytically, i.e. one FPR activates several G(i) proteins. Analysis of agonist saturation binding, ligand-regulated GTPgammaS saturation binding and quantitative immunoblotting with membranes expressing FPR-G(i)alpha fusion proteins and nonfused FPR now reveals that FPR agonist binding greatly underestimates the actual FPR expression level. Our data show the following: (i) the FPR couples to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) with similar efficiency; (ii) the FPR can exist in a state of low agonist affinity that couples efficiently to G proteins; and (iii) in contrast to the previously held view, the FPR appears to activate G(i) proteins linearly and not catalytically.  相似文献   

15.
G protein-coupled receptors (GPCR) and cellular signaling elements are prime targets for drug discovery. Sensitive real-time methods that expand the analytical capabilities for these elements can play significant roles in basic research and drug discovery. Here, we describe novel approaches for the real-time fluorescence analysis of GPCRs. Using the G protein-coupled N-formyl peptide receptor (FPR) as a model system in concert with a fluorescent ligand, we showed the quantitative solubilization of his-tagged FPRs in 1% dodecyl maltoside. Solubilized receptors reconstitute in dodecyl maltoside with a mixture of bovine brain Gi/Go showing an apparent Kd of 100 nM. Solubilized receptors were also bound to Ni(2+)-silica particles and were detected in a flow cytometer by the binding of fluorescent ligand. The efficiency of receptor uptake by the particles was in excess of 80% with an apparent affinity for the bead in the nM range. The receptors had largely homogeneous dissociation characteristics, an appropriate Kd for the ligand in the low nM range and a high site number, with several million receptor molecules per particle. However, the G protein reconstitution was not detected on the beads, apparently for steric reasons. These approaches for displaying receptors could prove useful in drug discovery and in the analysis of the molecular assemblies in signal transduction.  相似文献   

16.
Receptors of the of seven transmembrane spanning, heterotrimeric G protein coupled family (GPCR) play crucial roles in regulating physiological functions and consequently are targets for the action of many classes of drugs. Activation of receptor by agonist leads to the dissociation of GDP from Galpha of the Galphabetagamma heterotrimer, followed by the binding of GTP to Galpha and subsequent modulation of downstream effectors. The G protein heterotrimer is reformed by GTPase activity of the Galpha subunit, forming Galpha-GDP and so allowing Galpha and Gbetagamma to recombine. The [35S]GTPgammaS assay measures the level of G protein activation following agonist occupation of a GPCR, by determining the binding of the non-hydrolyzable analog [35S]GTPgammaS to Galpha subunits. Thus, the assay measures a functional consequence of receptor occupancy at one of the earliest receptor-mediated events. The assay allows for traditional pharmacological parameters of potency, efficacy and antagonist affinity, with the advantage that agonist measures are not subjected to amplification or other modulation that may occur when analyzing parameters further downstream of the receptor. In general the assay is experimentally more feasible for receptors coupled to the abundant G(i/o) proteins. Nevertheless, [35S]GTPgammaS binding assays are used with GPCRs that couple to the G(s) and G(q) families of G proteins, especially in artificial expression systems, or using receptor-Galpha constructs or immunoprecipitation of [35S]GTPgammaS-labeled Galpha. The relative simplicity of the assay has made it very popular and its use is providing insights into contemporary pharmacological topics including the roles of accessory proteins in signaling, constitutive activity of receptors and agonist specific signaling.  相似文献   

17.
Purified muscarinic receptors (0.5-10 nmol of L-[3H]quinuclidinyl benzilate-binding sites/mg of protein) from bovine brain and the GTP-dependent regulatory protein, Go, were reconstituted with a lipid mixture of phosphatidylcholine and cholesterol. Essentially all of the receptors could interact with Go as evinced by increases in affinity for agonist as large as 800-fold. Both the alpha and beta gamma subunits of Go were required for this effect. Similarly, both subunits were required for the stimulation of guanine nucleotide exchange by agonists. This latter action of the receptor on Go was catalytic and potentiated markedly by prior treatment with dithiothreitol. Initially, agonist stimulation of association of GTP and guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to Go was small and variable due to high basal rates. Prior addition of excess GDP inhibited the basal rate of exchange but allowed stimulation by agonists. Under these conditions, oxotremorine stimulated the rates of association of GTP gamma S up to 10-fold. This selective effect was not mimicked by GTP which inhibited both the basal and hormone-dependent rates. Direct examination of the association of GTP and GDP to Go demonstrated that agonist caused either stimulation or marked inhibition, respectively. These results indicate that receptors stimulate guanine nucleotide exchange on G proteins by both increasing the rates of dissociation of nucleotides and altering their relative affinities such that binding of GTP becomes highly favored over GDP. This would ensure the activation of G proteins by receptors in the presence of both nucleotides.  相似文献   

18.
The formyl peptide receptor (FPR) is a prototypical chemoattractant receptor expressed in neutrophils. It is well known that the FPR couples to G(i) proteins to activate phospholipase C, chemotaxis, and cytotoxic cell functions, but the in vivo role of the FPR in man has remained elusive. Recently, F110S and C126W mutations of the FPR have been associated with localized juvenile periodontitis. We studied FPR-F110S and FPR-C126W in comparison with wild-type FPR (FPR-WT) by coexpressing epitope-tagged versions of these receptors with the G protein Galpha(i2)beta(1)gamma(2) in Sf9 insect cells. FPRs were efficiently expressed in Sf9 membranes as assessed by immunoblotting using the beta(2)-adrenoreceptor as a standard. FPR-C126W differed from FPR-WT and FPR-F110S in migration on SDS-polyacrylamide gels and tunicamycin-sensitive glycosylation. FPR-WT efficiently reconstituted high-affinity agonist binding and agonist- and inverse agonist-regulated guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding to Galpha(i2)beta(1)gamma(2). In contrast, FPR-F110S only weakly reconstituted agonist-stimulated GTPgammaS binding, and FPR-C126W was completely inefficient. Collectively, our data show almost complete and complete loss of G(i) protein coupling in FPR-F110S and FPR-C126W, respectively. The severe functional defects in FPR-F110S and FPR-C126W contrast with the discrete clinical symptoms associated with these mutations, indicating that loss of FPR function in host defense is, for the most part, readily compensated.  相似文献   

19.
Formyl peptides and leukotriene B4 (LTB4) stimulate disparate neutrophil functional responses and second messenger generation. The hypothesis that differences in receptor-guanine nucleotide-binding proteins (G protein) interaction account for the disparate responses was examined using HL-60 granulocyte plasma membranes. The quantity of receptor-coupled G proteins was determined by guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) equilibrium binding in the presence or absence of f-Met-Leu-Phe and/or LTB4. About one-third of the total GTP gamma S binding sites were coupled to f-Met-Leu-Phe receptors, to LTB4 receptors, and to receptors when both ligands were added simultaneously. The dissociation constant of GTP gamma S-binding sites in the presence of LTB4 was significantly greater than that in the presence of f-Met-Leu-Phe. f-Met-Leu-Phe shifted the GDP dose-inhibition curve for GTP gamma S binding further to the right than did LTB4. The apparent initial rate of GTP hydrolysis and GTP gamma S binding stimulated by f-Met-Leu-Phe was significantly greater than that stimulated by LTB4. There were significantly more formyl peptide receptors than LTB4 receptors, however, formyl peptide and LTB4 receptor density did not differ under GTP gamma S binding assay conditions. The rate of GTP hydrolysis stimulated by LTB4 was not increased in membranes containing twice the LTB4 receptor density. We conclude that formyl peptide receptors stimulate more rapid activation of a common pool of G proteins than LTB4 receptors because of a significantly reduced affinity of formyl peptide receptor-activated G proteins for GDP.  相似文献   

20.
The mechanism by which G protein-coupled receptors (GPCRs) translate extracellular signals into cellular changes initially was envisioned as a simple linear model: activation of the receptor by agonist binding leads to dissociation of the heterotrimeric GTP-binding G protein into its alpha and betagamma subunits, both of which can activate or inhibit various downstream effector molecules. The plethora of recently described multidomain scaffolding proteins and accessory/chaperone molecules that interact with GPCR, including GPCR themselves as homo- or heterodimers, provides for diverse molecular mechanisms for ligand recognition, signalling specificity, and receptor trafficking. This review will summarize the recently described GPCR-interacting proteins and their individual functional roles, as understood. Implicit in the search for the functional relevance of these interactions is the expectation that enhancement or disruption of target cell-specific events could serve as highly selective therapeutic opportunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号