首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The activity and enantioselectivity of Candida rugosa lipase were investigated in chiral solvents, (–)-, (+)- and racemic carvone, for the resolution of 2-chloro-propionic acid with n-butanol via esterification. The activity of the enzyme studied was about 50% higher in (–)-carvone than in (+)-carvone, however the enantioselectivity was similar.  相似文献   

3.
Candida rugosa lipase was immobilized by first cross-linking with glutaraldehyde and then entrapping in calcium alginate beads. The presence of 2-propanol during cross-linking markedly improved the enzyme activity and activity recovery. Maximal enzyme activity (2.1?mmol?h?1?g?1 immobilized conjugate, wet weight) and activity recovery (117%) were observed at 30% (v/v) 2-propanol for hydrolysis of olive oil, which were 1.7 and 2.0 times higher than those of the immobilized enzyme prepared in the absence of 2-propanol. The half-life of the immobilized lipase prepared by entrapment after cross-linking in 30% 2-propanol was 1.6 times higher than that prepared by entrapment of the native lipase without cross-linking and 2-propanol pretreatment. The enantioselectivity of the former was 11 times higher than that of the latter for hydrolysis of racemic ketoprofen ethyl ester.  相似文献   

4.
Lipase-coated microcrystals of inorganic salts were prepared by dissolving enzymes in buffers and then mixing with 3 volumes of saturated salt solutions followed by drop-wise addition into polar precipitating organic solvents. The Mucor javanicus lipase-coated microcrystals did not show any activity for esterification of lauric acid with 1-propanol in isooctane when NaCl and Na2SO4 were used as the salts but showed much higher activity than the enzyme powder when KCl (10.0 times) and K2SO4 (5.8 times) were used as the salts and precipitated in 1-propanol. Acetonitrile was found to be the best precipitating solvent for preparing M. javanicus lipase-coated microcrystals, with enzyme activities 26.2 and 22.4 times higher than that of the enzyme powder when KCl and K2SO4 were used as precipitating salts, respectively. The presence of water in the precipitating solvents markedly decreased the enzyme activity. The M. javanicus lipase-coated microcrystals prepared using K2SO4 as the salt and acetonitrile as the precipitating solvent was as active at 80°C as at 40°C. No significant improvement in enantioselectivity of Candida rugosa lipase-coated microcrystals was observed for transesterification of 1-phenylethanol with vinyl acetate in hexane when the microcrystals were prepared by dissolving the enzymes in salt solutions containing 25% (v/v) of acetone or 2-propanol before precipitating in polar solvents.  相似文献   

5.
A novel technique for immobilization of Candida rugosa lipase onto anionic colloidal gas aphrons (CGAs) is described. CGAs are spherical microbubbles (10-100 microm) composed of an inner gas core surrounded by a surfactant shell. In this initial study, greater than 80% lipase (w/w) was effectively retained on the CGAs. Leakage of protein from the CGAs and the activity of the adsorbed lipase decreased with increasing enzyme loading; this indicates that multilayers of lipase may be adsorbing onto the CGAs. The CGA-immobilised lipase displayed normal Michaelis-Menten dependence on substrate concentration and also exhibited greater activity than the free enzyme.  相似文献   

6.
The influence on lipase activity in water of a pretreatment on Candida rugosa lipase using water miscible and immiscible solvents was studied. The lipase activity in the hydrolysis of esteric substrates in aqueous media increases when the lipase was previously treated with various nearly anhydrous organic media. This activation, which was irreversible, was higher for longer pretreatment times. It was dependent on the pretreatment medium (water activity and solvent used). A relation between variations in the emission intensity and the activities of treated and untreated lipases was found. Activating pretreatment did not shift the peak of fluorescence emission but gave rise to variations in the secondary protein structure by increasing the helical nature. A similar increment in the hydrolysis rate in water can be obtained with the addition of an appropriate amount of solvent (acetonitrile or n-heptane) to the aqueous reaction medium.  相似文献   

7.
The thermal stability of Candida rugosa (C. rugosa) lipase was investigated and compared in n-hexane, benzene, dibutyl-ether as well as [bmim]PF6 and [omim]PF6 ionic liquids and the effect of solvent polarity and water activity were evaluated. Deactivation of the enzyme followed a series-type kinetic model. First order deactivation rate constants and the ratios of specific activities were determined and the kinetics of deactivation were studied. Among the organic solvents, the best stability was observed in n-hexane with a half-life of 6.5 h at water activity of 0.51. In ionic liquids, however, even longer half lives were obtained, and the enzyme was stable in these solvents at 50°C. The highest half-life times were obtained in [bmim]PF6 (12.3 h) and [omim]PF6 (10.6 h). A direct correlation was found between solvent polarity and thermal stability since the higher the polarity of the solvent, the lower was the stability decrease at 50°C comparing to that at 30°C.  相似文献   

8.
The thermal stability of Candida rugosa (C. rugosa) lipase was investigated and compared in n-hexane, benzene, dibutyl-ether as well as [bmim]PF6 and [omim]PF6 ionic liquids and the effect of solvent polarity and water activity were evaluated. Deactivation of the enzyme followed a series-type kinetic model. First order deactivation rate constants and the ratios of specific activities were determined and the kinetics of deactivation were studied. Among the organic solvents, the best stability was observed in n-hexane with a half-life of 6.5?h at water activity of 0.51. In ionic liquids, however, even longer half lives were obtained, and the enzyme was stable in these solvents at 50°C. The highest half-life times were obtained in [bmim]PF6 (12.3?h) and [omim]PF6 (10.6?h). A direct correlation was found between solvent polarity and thermal stability since the higher the polarity of the solvent, the lower was the stability decrease at 50°C comparing to that at 30°C.  相似文献   

9.
Esterifications catalysed by immobilised lipase from Candida rugosa (CRL) in cyclohexane at constant water activity (aw = 0.76) were studied using 2-methyl substituted octa-, nona- or decanoic acids and n-alcohols of varying chain length as substrates. The importance of controlling the water activity and choosing the right alcohol for obtaining maximum enantioselectivity is demonstrated. The immobilised lipase was easily recovered without loss of activity and enantioselectivity.  相似文献   

10.
Esterifications catalysed by immobilised lipase from Candida rugosa (CRL) in cyclohexane at constant water activity (aw = 0.76) were studied using 2-methyl substituted octa-, nona- or decanoic acids and n-alcohols of varying chain length as substrates. The importance of controlling the water activity and choosing the right alcohol for obtaining maximum enantioselectivity is demonstrated. The immobilised lipase was easily recovered without loss of activity and enantioselectivity.  相似文献   

11.
The fungus Candida rugosa produces multiple lipase isoenzymes (CRLs) with distinct differences in substrate specificity, in particular with regard to selectivity toward the fatty acyl chain length. Moreover, isoform CRL3 displays high activity towards cholesterol esters. Lipase isoenzymes share over 80% sequence identity but diverge in the sequence of the lid, a mobile loop that modulates access to the active site. In the active enzyme conformation, the open lid participates in the substrate-binding site and contributes to substrate recognition. To address the role of the lid in CRL activity and specificity, we substituted the lid sequences from isoenzymes CRL3 and CRL4 in recombinant rCRL1, thus obtaining enzymes differing only in this stretch of residues. Swapping the CRL3 lid was sufficient to confer to CRL1 cholesterol esterase activity. On the other hand, a specific shift in the chain-length specificity was not observed. Chimeric proteins displayed different sensitivity to detergents in the reaction medium.  相似文献   

12.
海藻糖对脂肪酶的保护机理及酶失活动力学   总被引:1,自引:0,他引:1  
采用自制的磁性固定化酶(MIE),考察了高温下二糖类对酶的保护作用。结果显示:海藻糖对悬浮于水溶液中的MIE没有保护作用;而在高温干燥后,对酶的保护作用效果依次为:海藻糖>乳糖>蔗糖,支持‘玻璃态学说’;此外,采用两步失活动力学模型能够较好的拟合酶的失活过程,并且得到酶的失活速率常数k和半衰期t1/2,加入海藻糖和乳糖之后,MIE的半衰期分别增长了31和23倍。  相似文献   

13.
In order to rationalize our discovery of a marked dependence of subtilisin's enantioselectivity on the organic solvent used as the reaction medium, we empolyed the X-ray crystal structure of the enzyme and the means of interactive computer modeling to construct the structures of the reactive enzyme-substrate complexes. For subtilisin-catalyzed transesterifications between vinyl butyrate and S and R enantiomers of chiral secondary alcohols XCH(OH)Y, the computer simulation data clearly explain a higher reactivity of the former enantiomer on the basis of severe steric hindrances experienced by the latter enantiomer in the active site of subtilisin. The models of binding derived by computer modeling also successfully predicted changes in subtilisin enantioselectivity as a function of the sizes of the X and Y substituents in the nucleophile and upon addition of certain inhibitors. (c) 1992 John Wiley & Sons, Inc.  相似文献   

14.
The optimal activity of a Candida rugosa lipase (Lipase OF) for hydrolysis of 2-chloroethyl ester of Ketoprofen [2-(3- benzoyphenyl) propionic acid] was at pH 4.0, while the best enantioselectivity (E) was at pH 2.2 where the enzyme was still 60% active and stable.  相似文献   

15.
Candida rugosa lipase-catalyzed esterification of ibuprofen with 1-propanol was conducted in seven ionic liquids and the results were compared with those in isooctane. Although the enzyme showed comparable or higher activity in some ionic liquids compared to that in isooctane, only in the case of [BMIM]PF6 was the enantioselectivity (E = 24.1) almost twice that (E = 13.0) of isooctane. In another six ionic liquids the enzyme enantioselectivity was much poorer (E = 1.1-6.4). At the same conversion of 30%, E of [BMIM]PF6 is more than triple that of isooctane. The lipase stability in [BMIM]PF6 was improved by 25% of that in isooctane. It was concluded that [BMIM]PF6 could be applied to substitute the conventional organic solvent (isooctane) in the esterification of ibuprofen.  相似文献   

16.
Enantiomer discrimination by enzymes is a very accurate mechanism, which often involves few amino acids located at the active site. Lipase isoforms from Candida rugosa are very good enzymatic models to study this phenomenon as they display high sequence homology (>80%) and their enantioselectivity is often pointed out. In the present work, we investigated three lipases from C. rugosa (Lip1, Lip3, and Lip4, respectively) towards the resolution of 2-bromo-arylacetic acid esters, an important class of chemical intermediates in the pharmaceutical industry. All exhibited a high enantioselectivity, with Lip4 preferring the R-enantiomer (E-value = 15), while Lip1 and Lip3 showed an S-enantioselectivity >200. A combination of sequence and structure analysis of the three C. rugosa lipases suggested that position 296 could play a role in S- or R-enantiomer preference of C. rugosa lipases. This led to the construction by site-directed mutagenesis of Lip1 and Lip4 variants in which position 296 was, respectively, exchanged by a Gly, Ala, Leu, or Phe amino acid. Screening of these variants for their enantioselectivity toward 2-bromo phenyl acetic acid octyl esters revealed that steric hindrance of the amino acid residue introduced at position 296 controls both the enantiopreference and the enantioselectivity value of the lipase: bulkier is the amino acid at position 296, larger is the selectivity towards the S-enantiomer. To investigate further these observations at an atomic level, we carried out a preliminary modeling study of the tetrahedral intermediates formed by Lip1 and Lip4 with the (R, S)-2-bromo-phenylacetic acid octyl ester enantiomers that provides some insight regarding the determinants responsible for lipase enantiodiscrimination.  相似文献   

17.
Replacing the lactose used in the commercial preparation of lipase from Candida rugosa by dextrans with different molecular weight, several preparations with enhanced activities in esterification of (R,S)-ibuprofen in organic medium were obtained. The presence of carbohydrates modifies the microenvironment of the enzyme and maintains the hydration of the biocatalyst. We can modulate the hydrophilic/hydrophobic balance on the surface of the biocatalyst creating non covalent enzyme-dextran complexes.  相似文献   

18.
Abstract

Several treatments were employed on Candida rugosa lipase (CRL) to improve its biocatalytic performance. Besides conventional alcohol treatment conditions, the effects of pH of the buffer solution used in the treatment as well as the changes in stirring, dialysis, and centrifugation steps of the treatment procedure were investigated for the first time for the resolution of racemic naproxen methyl ester. The highest enantioselectivity and conversion in S-naproxen production were achieved by CRL treated with pH 7.5 buffer solution. The elimination of the centrifugation step resulted in an increase in the enantioselectivity, whereas alcohol treatment of CRL was found to be inconvenient for S-naproxen production. Higher activity for p-nitrophenyl acetate was achieved when 20% butanol and pH 4 buffer solution were used, and when dialysis and stirring times were shortened.  相似文献   

19.
Sequence analysis of Candida rugosa lipase 1 (LIP1) predicts the presence of three N-linked glycosylation sites at asparagine 291, 314, 351. To investigate the relevance of sugar chains in the activation and stabilization of LIP1, we directed site mutagenesis to replace the above mentioned asparagine with glutamine residues. Comparison of the activity of mutants with that of the wild-type (wt) lipase indicates that both 314 and 351 Asn to Gln substitutions influence, although at a different extent, the enzyme activity both in hydrolysis and esterification reactions, but they do not alter the enzyme water activity profiles in organic solvents or temperature stability. Introduction of Gln to replace Asn351 is likely to disrupt a stabilizing interaction between the sugar chain and residues of the inner side of the lid in the enzyme active conformation. The effect of deglycosylation at position 314 is more difficult to explain and might suggest a more general role of the sugar moiety for the structural stability of lipase 1. Conversely, Asn291Gln substitution does not affect the lipolytic or the esterase activity of the mutant that behaves essentially as the wt enzyme. This observation supports the hypothesis that changes in activity of Asn314Gln and Asn351Gln mutants are specifically due to deglycosylation.  相似文献   

20.
Profens (2‐arylpropionic acids) are known as one of the major nonsteroidal antiinflammatory drugs (NSAIDs) used in the treatment of inflammation associated with tissue injury. The inflammatory activity of profens is mainly due to their (S)‐enantiomer, whereas they are commercially available not only as pure enantiomers, but as racemates as well. There are several methods widely used in order to obtain enantiomerically pure compounds, however, the kinetic resolution with the application of lipases as biocatalysts may have an added advantage in the production of optically pure active pharmaceutical ingredients, such as milder reaction conditions, reduced energy requirements, and production costs. The aim of this study was to compare the results described in the literature in the case of the influence of reaction medium, alcohol moiety, and reaction temperature on the catalytic activity of lipases from Candida antarctica and Candida rugosa. Chirality 26:663–669, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号