首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diethyldithiocarbamate reacted with superoxide dismutase from bovine erythrocytes. Changes in both optical and esr spectra, which accompanied this reaction, indicated involvement of the Cu(II). The reaction was accelerated by raising the concentrations of the reactants, elevating the temperature, and lowering the pH, in the range 10.2 to 5.5, and it was independent of the presence of oxygen. During the first phase of this reaction the Cu(II).diethyldithiocarbamate complex remained bound to the enzyme and the catalytic activity did not diminish. There followed a second and slower process which was accompanied by the appearance of colloidal Cu(II).chelate complex and by a loss of activity which could be restored by the addition of CuSO4. All of the observations are accomodated by a model in which 1 diethyldithiocarbamate molecule reacts/copper center, with retention of activity, in Phase I, while a second diethyldithiocarbamate displaces the copper, with a loss of activity, in Phase II.  相似文献   

2.
The LYS7 gene in Saccharomyces cerevisiae encodes a protein (yCCS) that delivers copper to the active site of copper-zinc superoxide dismutase (CuZn-SOD, a product of the SOD1 gene). In yeast lacking Lys7 (lys7Delta), the SOD1 polypeptide is present but inactive. Mutants lacking the SOD1 polypeptide (sod1Delta) and lys7Delta yeast show very similar phenotypes, namely poor growth in air and aerobic auxotrophies for lysine and methionine. Here, we demonstrate certain phenotypic differences between these strains: 1) lys7Delta cells are slightly less sensitive to paraquat than sod1Delta cells, 2) EPR-detectable or "free" iron is dramatically elevated in sod1Delta mutants but not in lys7Delta yeast, and 3) although sod1Delta mutants show increased sensitivity to extracellular zinc, the lys7Delta strain is as resistant as wild type. To restore the SOD catalytic activity but not the zinc-binding capability of the SOD1 polypeptide, we overexpressed Mn-SOD from Bacillus stearothermophilus in the cytoplasm of sod1Delta yeast. Paraquat resistance was restored to wild-type levels, but zinc was not. Conversely, expression of a mutant CuZn-SOD that binds zinc but has no SOD activity (H46C) restored zinc resistance but not paraquat resistance. Taken together, these results strongly suggest that CuZn-SOD, in addition to its antioxidant properties, plays a role in zinc homeostasis.  相似文献   

3.
In the absence of suitable oxidizable substrates, the peroxidase reaction of copper-zinc superoxide dismutase (SOD) oxidizes SOD itself, ultimately resulting in its inactivation. A SOD-centered free radical adduct of 2-methyl-2-nitrosopropane (MNP) was detected upon incubation of SOD with the spin trap and a hydroperoxide (either H(2)O(2) or peracetic acid). Proteolysis by Pronase converted the anisotropic electron paramagnetic resonance (EPR) spectrum of MNP/(center dot)SOD to a nearly isotropic spectrum with resolved hyperfine couplings to several atoms with non-zero nuclear spin. Authentic histidinyl radical (from histidine + HO(center dot)) formed a MNP adduct with a very similar EPR spectrum to that of the Pronase-treated MNP/(center dot)SOD, suggesting that the latter was centered on a histidine residue. An additional hyperfine coupling was detected when histidine specifically (13)C-labeled at C-2 of the imidazole ring was used, providing evidence for trapping at that atom. All of the experimental spectra were convincingly simulated assuming hyperfine couplings to 2 nearly equivalent nitrogen atoms and 2 different protons, also consistent with trapping at C-2 of the imidazole ring. Free histidinyl radical consumed oxygen, implying peroxyl radical formation. MNP-inhibitable oxygen consumption was also observed when cuprous SOD but not cupric SOD was added to a H(2)O(2) solution. Formation of 2-oxohistidine, the stable product of the SOD-hydroperoxide reaction, required oxygen and was inhibited by MNP. These results support formation of a transient SOD-peroxyl radical.  相似文献   

4.
Cu,Zn SOD is known to be inactivated by HO2 and to be protected against that inactivation by a number of small molecules including formate, imidazole, and urate. This inactivation has been shown to be due to oxidation of a ligand field histidine residue by a bound oxidant formed by reaction of the active site Cu(II) with HO2. We now report that protective actions of both formate and NADH increase as the pH was raised in the range 8.0–9.5. This is taken to indicate increased accessibility of the Cu site with rising pH and/or increased reactivity of the bound oxidant toward exogeneous substrates at high pH. Formate appears to act as a sacrificial substrate that protects by competing with the endogenous histidine residue for reaction with the bound oxidant, or that repairs the damage by reducing the histidyl radical intermediate. The same is likely also true of NADH.  相似文献   

5.
Analysis of soluble peptides derived from tryptic and chymotryptic digestions of carboxymethylated human superoxide dismutase gives primary structural information for approximately 67% of the protein. Regions so far elucidated appear to be highly homologous to the corresponding bovine enzyme; in particular Cys 6 and the two cysteine residues 55 and 144, which form the intrasubunit disulfide bond of the bovine enzyme, are conserved. A cluster of three substitutions including the fourth cysteine residue unique to the human enzyme has been found in positions 107–109 and may be related to the presence of persulfide groups in the human enzyme. The single tryptophan residue of the human protein is not homologous to the single tyrosine residue of the bovine protein.  相似文献   

6.
E K Hodgson  I Fridovich 《Biochemistry》1975,14(24):5299-5303
Reaction of bovine erythrocyte superoxide dismutase with H2O2 was accompanied by a luminescence whose intensity was a function of the concentration of H2O2 and whose duration was coincident with the inactivation of the enzyme by this reagent. Oxygen, which protected against inactivation, also diminished the luminescence. Several other compounds which prevented the inactivation by H2O2 also modified the luminescence. Thus urate, formate, and triethylamine inhibited luminescence whereas imidazole and xanthine augmented it. These seemingly contrary effects can be explained by assuming that the compounds which protected the enzyme were peroxidized in competition with the sensitive group on the enzyme. The luminescence arises because that group on the enzyme was oxidized to a product in an electronically excited state, which could return to the ground state by emitting light. Imidazole and xanthine gave electronically excited products whose quantum efficiency was greater than that of the group on the enzyme, whereas urate, formate, and triethylamine gave products with much lower luminescent efficiencies. This superoxide dismutase could catalyze the peroxidation of a wide range of compounds, including ferrocytochrome c, luminol, diphenylisobenzofuran, dianisidine, and linoleic acid. In control experiments, boiled enzyme was inactive. This peroxidative activity can lead to unexpected effects when superoxide dismutase is added to H2O2-producing systems, as a probe for the involvement of O2-. Several examples from the literature are cited to illustrate the misinterpretations which this previously unrecognized peroxidative activity can generate.  相似文献   

7.
The effects of superoxide dismutase on H2O2 formation   总被引:1,自引:1,他引:1  
Numerous reports of the effects of overproduction of SODs have been explained on the basis of increased H2O2 production by the catalyzed dismutation of O2-. In this review we consider the effects of increasing [SOD] on H2O2 formation and question this explanation.  相似文献   

8.
Nagababu E  Rifkind JM 《Biochemistry》2000,39(40):12503-12511
The reaction of Fe(II) hemoglobin (Hb) but not Fe(III) hemoglobin (metHb) with hydrogen peroxide results in degradation of the heme moiety. The observation that heme degradation was inhibited by compounds, which react with ferrylHb such as sodium sulfide, and peroxidase substrates (ABTS and o-dianisidine), demonstrates that ferrylHb formation is required for heme degradation. A reaction involving hydrogen peroxide and ferrylHb was demonstrated by the finding that heme degradation was inihibited by the addition of catalase which removed hydrogen peroxide even after the maximal level of ferrylHb was reached. The reaction of hydrogen peroxide with ferrylHb to produce heme degradation products was shown by electron paramagnetic resonance to involve the one-electron oxidation of hydrogen peroxide to the oxygen free radical, superoxide. The inhibition by sodium sulfide of both superoxide production and the formation of fluorescent heme degradation products links superoxide production with heme degradation. The inability to produce heme degradation products by the reaction of metHb with hydrogen peroxide was explained by the fact that hydrogen peroxide reacting with oxoferrylHb undergoes a two-electron oxidation, producing oxygen instead of superoxide. This reaction does not produce heme degradation, but is responsible for the catalytic removal of hydrogen peroxide. The rapid consumption of hydrogen peroxide as a result of the metHb formed as an intermediate during the reaction of reduced hemoglobin with hydrogen peroxide was shown to limit the extent of heme degradation.  相似文献   

9.
The copper chelator N,N'-diethyldithiocarbamate (DDC), is often used to inactivate intracellular copper-zinc superoxide dismutase in erythrocytes. However, in studies with red cells we found that the compound also reacted with oxyhemoglobin to produce oxygen radicals in addition to generating lipid peroxidation products, oxidized N,N'-diethyldithiocarbamate, methemoglobin, and sulfhemoglobin. Moreover, intracellular glutathione was depleted and vital cellular enzymes were susceptible to inactivation. We, and others, have confirmed these findings in nonerythrocytic cell lines. Thus, cells exposed to DDC are severely damaged before studies on the effects of added putative superoxide producing compounds can be performed with them. In this report, we have systematically investigated other copper chelators for their ability to inactivate intracellular copper-zinc superoxide dismutase without producing the deleterious effects mentioned above. Catechol, triethylenetetramine, and tetraethylenepentamine were found to be such agents when erythrocytes were dialyzed in the cold against dilute solutions of these chelators. In addition, with a myeloid leukemic cell line (HL-60), triethylenetetramine inhibited SOD without causing significant GSH oxidation. Examination of the affinity constants of chelators active against purified copper-zinc superoxide dismutase indicated that an affinity binding constant (log K1) between 12.6 and 13.8 was required for the chelator to successfully remove copper from the enzyme.  相似文献   

10.
E K Hodgson  I Fridovich 《Biochemistry》1975,14(24):5294-5299
Bovine erythrocyte superoxide dismutase was slowly and irreversibly inactivated by hydrogen peroxide. The rate of this inactivation was directly dependent upon the concentrations of both H2O2 and of enzyme, and its second-order rate constant at pH 10.0 and 25 degrees was 6.7 M-1 sec-1. Inactivation was preceded by a bleaching due to rapid reduction of Cu2+ on the enzyme, and following this there was a gradual reappearance of a new absorption in the visible region, which was coincident with the loss of catalytic activity. Inactivation of the enzyme was pH-dependent and indicated an essential ionization whose pKa was approximately 10.2. Replacement of H2O by D2O raised this pKa but did not diminish the catalytic activity of superoxide dismutase, measured at pH 10.0. Several compounds, including xanthine, urate, formate, and azide, protected the enzyme against inactivation by H2O2. Alcohols and benzoate, which scavenge hydroxyl radical, did not protect. Compounds with special affinity for singlet oxygen were similarly ineffective. The data were interpreted in terms of the reduction of the enzyme-bound Cu2+ to Cu+, by H2O2, followed by a Fenton's type reaction of the Cu+ with additional H2O2. This would generate Cu2+-OH- or its ionized equivalent, Cu2+-O--, which could then oxidatively attack an adjacent histidine and thus inactivate the enzyme. Compounds which protected the enzyme could have done so by reacting with the bound oxidant, in competition with the adjacent histidine.  相似文献   

11.
Formation of superoxide ion (O2-) from the reaction of CuII(en)2 (en: ethylenediamine) with hydrogen peroxide (H2O2) was first determined spectrophotometrically by use of nitro blue tetrazolium (NBT) in aqueous solutions. From this result, it has been suggested that superoxide ion is generated as an intermediate at the first reaction step between CuII(en)2 and H2O2.  相似文献   

12.
The reaction of the copper of (Cu,Zn)-superoxide dismutase with diethyldithiocarbamate was studied at pH = 7.4 and the results obtained led to a reaction scheme basically different from the conclusion of a previous study (Misra, H. P. (1979) J. Biol. Chem. 254, 11623-11628). The analysis of optical and ESR spectra at 9 and 35 GHz, at different ligand/protein ratios and reaction times, showed that a ternary diethyldithiocarbamate. Cu(II).protein complex never formed in spectroscopically detectable amounts. The system is described in any condition as the mixture, in variable proportions, of only two components, that is the diethyldithiocarbamate-free (Cu(II) chelate and the copper-depleted protein. The formation of a catalytically active copper-diethyldithiocarbamate intermediate with distinct optical and ESR spectra was also ruled out by kinetic studies, which demonstrated that enzyme inactivation strictly parallels the binding of diethyldithiocarbamate as monitored by optical absorption and ESR. Separation of the copper complex from the protein was obtained for the first time, and the procedure was suitable for rapid preparation of reconstitutable copper-free superoxide dismutase.  相似文献   

13.
Human copper-zinc superoxide dismutase undergoes inactivation when exposed to O2? and H2O2 generated during the oxidation of acetaldehyde by xanthine oxidase at pH 7.4 and 37° C. In contrast, human manganese superoxide dismutase is not inactivated under the same conditions. Catalase and Mn-superoxide dismutase protect CuZn superoxide dismutase from inactivation. Similar protection is observed with hydroxyl radical (OH.) scavengers, such as formate and mannitol. In contrast, other OH. scavengers such as ethanol and tert-butyl alcohol, have no protective action. The latter results indicate that “free OH.” is not responsible for the inactivation. Furthermore, H2O2 generated during the oxidation of glucose by glucose oxidase, i.e., without production of O2?, does not induce CuZn superoxide dismutase inactivation. A mechanism accounting for this O2?H2O2-dependent inactivation of CuZn superoxide dismutase is proposed.  相似文献   

14.
The oxidation of sodium diethyldithiocarbamate (DDC) by hydrogen peroxide or superoxide radicals has been investigated. Hydrogen peroxide oxidizes DDC, leading to the formation of a hydrated form of disulfiram, a dimer of DDC having a disulfide group. In equimolar conditions, the overall process appears as a first-order reaction (k = 0.025±0.005 s−1), the first step being a second-order reaction (k = 5.0±0.1mol−1.1. s−1). No radical intermediate was observed in this process. In the presence of an excess of any of the reagents, the hydrated form of disulfiram transforms into different products corresponding to the fixation of oxygen by sulfur atoms or replacement of C = S group by ketone function, in the presence of an excess of hydrogen peroxide. Superoxide anions (produced by steady-state 60Co γ-radiolysis) oxidize DDC, yielding similar products to those obtained with hydrogen peroxide with a maximum oxidation G-value of 0.3 μmol.J−1. The rate constant k(O2·− + DDC) is equal to 900 mol−1. 1. s−1.  相似文献   

15.
In addition to the well known catalytically accelerated O2 dismutation, Cu2Zn2 Superoxide dismutase (SOD) reversibly reduces NO to NO with the consequence of a prolonged half-life of NO. This alternative reactivity was examined in the presence of the intact CuZn enzyme and a diSchiff base copper complex prepared from putrescine and pyridine-2-aldehyde (Cu-PuPy) which is known as a convenient active center analog of the former copper protein. The reaction of this SOD mimick with NO and NO was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopy via the formation of nitrosylmyoglobin. Cu-PuPy reacted up to three times faster with NO compared with Cu2Zn2 SOD and 15 times faster in comparison with CuSO4 and copper EDTA. The oxidation rate of NO by Cu-PuPy was up to 300% higher compared with the reactivities of CuSO4 and Cu EDTA. Cu2Zn2SOD reacted with NO to a neglible extent only. Catalytic characteristics could be observed in the course of the oxidation of NO in concentrations between 1 and 20 M copper. Disturbances of the EPR properties suggested a modification of the chemical environment at the copper sites in both the copper complex and the enzyme. As a consequence, no further reactions of the nitrogen monoxides with the respective active centers were seen. In conclusion, Cu-PuPy appears to be an efficient moderator of the biochemical reactivity of nitrogen monoxides attributable to the observed increased half-life of NO.  相似文献   

16.
Bovine liver Cu,Zn superoxide dismutase (SOD) is inactivated by hydrogen peroxide at alkaline pH, and full inactivation correlates with the loss of 1.1 histidine/subunit. At each pH utilized, saturation of the rate of inactivation is observed. This process is characterized by a half-saturation constant for peroxide and a maximum pseudo-first-order rate constant for inactivation. At 25 degrees C, the former decreases from 15.7 to 3.2 mM as the pH is increased from 9.0 to 11.5, while the latter increases from 0.83 to 2.43 per min over the same pH range. We have previously (Arch. Biochem. Biophys. 224, 579 (1983] proposed that the true affinity reagent for the inactivation of yeast SOD is the hydroperoxide anion, and we now believe the same is true for bovine SOD. However, a subtle difference between the two enzymes exists, for while the maximum pseudo-first-order rate constant for inactivation of bovine SOD increases with increasing pH, the same parameter for the yeast enzyme is pH-independent.  相似文献   

17.
Superoxide radicals in high concentrations were generated from alkaline H2O2 without using catalysts or irradiation. The dependence of the intensity and parameters of the superoxide radical EPR spectrum on pH, temperature, viscosity and H2O2 concentration were studied. The observed changes are explained on the base of matrix effects. The addition of superoxide dismutase to alkaline H2O2 led initially to a drop in the EPR spectrum intensity, followed by an increase in the concentration of superoxide radicals.  相似文献   

18.
To assess whether allantoin levels in serum and urine are influenced by exhaustive and moderate exercise and whether allantoin is a useful indicator of exercise-induced oxidative stress in humans, we made subjects perform exhaustive and moderate (100% and 40% VO2max) cycling exercise and examined the levels of allantoin, thiobarbituric acid reactive substances (TBARS) and urate in serum and urine. Immediately after exercise at 100% VO2max, the serum allantoin/urate ratio was significantly elevated compared with the resting levels while the serum urate levels was significantly elevated 30 min after exercise. The serum TBARS levels did not increase significantly compared with the resting levels. Urinary allantoin excretion significantly increased during 60 min of recovery after exercise, however, urinary urate excretion decreased significantly during the same period. The urinary allantoin/urate ratio also rapidly increased during 60 min of recovery after exercise. Urinary TBARS excretion decreased during the first 60 min of the recovery period and thereafter significantly increased during the latter half of the recovery period. On the contrary, after 40% VO2max of exercise, no significant changes in the levels of urate, allantoin and TBARS in serum or urine were observed. These findings suggest that allantoin levels in serum and urine may reflect the extent of oxidative stress in vivo and that the allantoin which appeared following exercise may have originated not from urate formed as a result of exercise but from urate that previously existed in the body. Furthermore, these findings support the view that allantoin in serum and urine is a more sensitive and reliable indicator of in vivo oxidative stress than lipid peroxidation products measured as TBARS.  相似文献   

19.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号