首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphonoacetate was found to be an inhibitor of the DNA polymerase α from three human cells, HeLa, Wi-38, and phytohemagglutinin-stimulated lymphocytes. The inhibition patterns were determined. The apparent inhibition constants (Kii) were about 30 μm. Thus the DNA polymerase α is 15 to 30 times less sensitive to Phosphonoacetate than the herpesvirus-induced DNA polymerase. The DNA polymerase α from Chinese hamster ovary cells and calf thymus was also inhibited. The DNA polymerases β and γ from the eucaryotic cells were relatively insensitive to phosphonoacetate. The sensitivity of the DNA polymerase α and the relative insensitivity of the DNA polymerase β and γ appeared to be general characteristics of the vertebrate polymerases, DNA polymerases from two other eucaryotic cells, yeast DNA polymerase A and B and tobacco cell DNA polymerase, were inhibited by phosphonoacetate, and to about the same extent as the α-polymerases. Fourteen phosphonate analogs were examined for inhibition of the HeLa DNA polymerase α. Only one, phosphonoformate, was an inhibitor. The mechanism of inhibition for phosphonoformate was analogous to that for phosphonoacetate.  相似文献   

2.
Babynin EV 《Genetika》2004,40(5):581-591
Stability of genomes of living organisms is maintained by various mechanisms that ensure high fidelity of DNA replication. However, cells can reversibly enhance the level of replication errors in response to external factors. As mutable states are potentially involved in carcinogenesis, aging, and resistance for pathogenic agents, the existence of these states is of great importance for human health. A well-known system of inducible mutation is SOS response, whose key component is replication of damaged DNA regions. Inducible mutation implies a contribution of SOS response to the adaptation of a bacterial population to adverse environments. There is ample evidence indicating the primary role of SOS response genes in the phenomenon of adaptive mutation. The involvement of the SOS system in adaptive mutagenesis is discussed.  相似文献   

3.
The mutagenic potency of the simple reversible intercalators isopropyl-OPC (iPr-OPC) and 9-aminoacridine (9-AA) is assessed in E. coli using reversion assays based on plasmids derived from pBR322 carrying various frameshift mutations within the tetracycline resistance gene in repetitive sequences: +/- 2 frameshift mutations within alternating GC sequences; +/- 1 frameshift mutation at runs of guanines. The results obtained show that iPr-OPC and 9-AA have a sequence specificity for mutagenesis: they revert +1 and -1 frameshift mutations within runs of monotonous G:C base pairs. The precise determination of the size of a small restriction fragment which contains the mutation allowed us to demonstrate that reversion occurred by -1 deletions for the +1 frameshift mutations and by +1 additions for the -1 frameshift mutations. The possible relations of this specific reversion with the base sequence specificity of the mutagenesis are briefly discussed.  相似文献   

4.
5.
6.
The mutagenicity of an oxidized form of dGTP, 8-hydroxy-2′-deoxyguanosine 5′-triphosphate (8-OH-dGTP), was examined using human 293T cells. Shuttle plasmid DNA containing the supF gene was first transfected into the cells, and then 8-OH-dGTP was introduced by means of osmotic pressure. The DNAs replicated in the cells were recovered and then transfected into Escherichia coli. 8-OH-dGTP induced A:T  C:G substitution mutations in the cells. The knock-downs of DNA polymerases η and ζ, and REV1 by siRNAs reduced the A:T  C:G substitution mutations, suggesting that these DNA polymerases are involved in the misincorporation of 8-OH-dGTP opposite A in human cells. In contrast, the knock-down of DNA polymerase ι did not affect the 8-OH-dGTP-induced mutations. The decrease in the induced mutation frequency was more evident by double knock-downs of DNA pols η plus ζ and REV1 plus DNA pol ζ (but not by that of DNA pol η plus REV1), suggesting that REV1-DNA pol η and DNA pol ζ work in different steps. These results indicate that specialized DNA polymerases are involved in the mutagenesis induced by the oxidized dGTP.  相似文献   

7.
Escherichia coli DNA polymerase IV incorporated 2-hydroxy-dATP opposite template guanine or thymine and 8-hydroxy-dGTP exclusively opposite adenine in vitro. Mutator phenotypes in sod/fur strains were substantially diminished by deletion of dinB and/or umuDC. DNA polymerases IV and V may be involved in mutagenesis caused by incorporation of the oxidized deoxynucleoside triphosphates.  相似文献   

8.
Chloroquine can be detected as a direct-acting mutagen in plate-incorporation assays using the excision-deficient Salmonella typhimurium strain TA97, but very much more effectively using the repair-proficient Escherichia coli strain DG1669 which carries the lacZ19124 marker. When tested at concentrations of 200-1000 micrograms/plate with strain DG1669, the mutagenicity of chloroquine is enhanced by the addition of Aroclor-induced rat-liver S9. Further experiments indicated that chloroquine-induced reversion frequencies were essentially identical in wild-type, recA, umuC and uvrC derivatives of DG1669, as well as in strains carrying the mutation enhancing plasmid pKM101, over a wide range of doses (0-1200 micrograms/plate). These results suggest that neither excision repair nor SOS-type repair are important in chloroquine-induced frameshift mutagenesis.  相似文献   

9.
The simple reversible intercalating agents isopropyl-oxazolopyridocarbazole and 9-aminoacridine have been found to induce frameshift -1 mutations at a much lower level in Salmonella typhimurium delta uvrB TA 1537 than in the uvr+ wild type TA 1977 strain. This phenomenon can neither be explained by differential cytotoxicity of the drug nor by selective permeation and accessibility to intercalating sites to bacterial DNA. These finding indicate that the lower mutagenicity of intercalating agents in the delta uvrB strains does not result from nonspecific phenotypic modifications of parameters which control the mutagenesis. That leads to the hypothesis that in agreement with the Streisinger's model, the excision repair system could be directly involved in the appearance of frameshift mutations.  相似文献   

10.
We have undertaken an initial characterization of frameshift mutagenesis in bacteriophage T7 and have identified a subset of very low reversion frameshift mutations in the T7 ligase gene (gene 1.3). We used this information to construct bacteriophage T7 strains that contain one extra or one less base pair in gene 1.3 such that a frameshift event restores the reading frame of that gene. These events can be quantified and the frameshift mutation isolated within a localized region of the ligase gene. We have also identified a portion of the T7 ligase protein that will accept tracts of nonsense amino acids yet still give a ligase positive phenotype. This allows flexibility in the design of the target DNA sequence with which to study frameshift mutagenesis. These assays for frameshift mutagenesis performed in E. coli cells infected with the appropriate T7 strain, were used to measure the frequency of both plus and minus frameshifts in vivo.  相似文献   

11.
12.
Replication slippage of DNA polymerases is a potential source of spontaneous genetic rearrangements in prokaryotic and eukaryotic cells. Here we show that different thermostable DNA polymerases undergo replication slippage in vitro, during single-round replication of a single-stranded DNA template carrying a hairpin structure. Low-fidelity polymerases, such as Thermus aquaticus (Taq), high-fidelity polymerases, such as Pyrococcus furiosus (Pfu) and a highly thermostable polymerase from Pyrococcus abyssi (Pyra exo(-)) undergo slippage. Thermococcus litoralis DNA polymerase (Vent) is also able to slip; however, slippage can be inhibited when its strand-displacement activity is induced. Moreover, DNA polymerases that have a constitutive strand-displacement activity, such as Bacillus stearothermophilus DNA polymerase (Bst), do not slip. Polymerases that slip during single-round replication generate hairpin deletions during PCR amplification, with the exception of Vent polymerase because its strand-displacement activity is induced under these conditions. We show that these hairpin deletions occurring during PCR are due to replication slippage, and not to a previously proposed process involving polymerization across the hairpin base.  相似文献   

13.
Bacteriophage T4 gene 43 codes for the viral DNA polymerase. We report here the sequence of gene 43 and about 70 nucleotides of 5'- and 3'-flanking sequences, determined by both DNA and RNA sequencing. We have also purified T4 DNA polymerase from T4 infected Escherichia coli and from E. coli containing a gene 43 overexpression vector. A major portion of the deduced amino acid sequence has been verified by peptide mapping and sequencing of the purified DNA polymerase. All these results are consistent with T4 DNA polymerase having 898 amino acids with a calculated Mr = 103,572. Comparison of the primary structure of T4 DNA polymerase with the sequence of other procaryotic and eucaryotic DNA polymerases indicates that T4 DNA polymerase has regions of striking similarity with animal virus DNA polymerases and human DNA polymerase alpha. Surprisingly, T4 DNA polymerase shares only limited similarity with E. coli polymerase I and no detectable similarity with T7 DNA polymerase. Based on the location of specific mutations in T4 DNA polymerase and the conservation of particular sequences in T4 and eucaryotic DNA polymerases, we propose that the NH2-terminal half of T4 DNA polymerase forms a domain that carries out the 3'----5' exonuclease activity whereas the COOH-terminal half of the polypeptide contains the dNTP-binding site and is necessary for DNA synthesis.  相似文献   

14.
Ultraviolet (UV) and gamma-induced mutagenesis have been studied using a doubly auxotrophic strain of Salmonella typhimurium carrying the amber leuA150 mutation (which reverts by base-pair substitution) and the frameshift hisC3076 marker (which reverts by compensating frameshifts). In the initially constructed LT2 background, both markers were poorly revertible by UV and essentially non-revertible by gamma-radiation. A derivative of this strain carrying the mutation-enhancing plasmid pKM101 was however readily reverted by both UV and gamma, with either Leu+ (base substitution) or His+ (frameshift) revertants being observed on appropriate selective media. Photoreactivation experiments suggested that the lesions leading to formation of the two types of mutagenic event were similar if not identical. Support for this suggestion was obtained when it was found that yields of both types of UV-induced revertant were significantly increased in an excision-deficient background, while no revertants of either type were found in a recA background. Yields of gamma-induced revertants were not greatly altered in a uvrB background, but were also reduced to zero (for both markers) in the recA background. These results are consistent with what has previously been well-documented for UV and gamma-induced base-pair substitution mutagenesis, and serve to emphasize the similarities between base-pair substitution mutagenesis and frameshift mutagenesis by these agents. There are differences, however, since although UV-induced reversion of the leuA150 marker was little affected and gamma-induced reversion of leuA150 was somewhat reduced in the presence of a polA mutation (polA3), the yields of His+ frameshift revertants were significantly increased in the polA3 background following treatment with either UV or gamma. Thus while inducible DNA repair (SOS repair) appears to be involved in generating both types of mutational event following either UV- or gamma-irradiation, at some stage in the processing of premutational lesions the level (or type) of DNA polymerase I activity in the cell seems to have an important role in determining whether or not frameshifts or base-pair substitutions will be produced at a particular frequency.  相似文献   

15.
Novel DNA polymerases offer clues to the molecular basis of mutagenesis.   总被引:12,自引:0,他引:12  
E C Friedberg  V L Gerlach 《Cell》1999,98(4):413-416
  相似文献   

16.
We have compared the capacity of the large fragment of E. coli DNA polymerase I and highly purified DNA polymerases alpha from either Drosophila melanogaster embryos or calf thymus to replicate single-stranded M13 mp10 DNA treated with the antitumoral drug cis-diamminedichloroplatinum(II) (cis-DDP). We report that: a) although prokaryotic and eukaryotic enzymes have different structural complexity and dissimilar in vivo functions, their synthesis was blocked in vitro at similar sites on cis-DDP treated DNA; b) this inhibition occurred not only at d(G)n sequences, as previously reported for E. coli DNA polymerase I, (Pinto & Lippard (1985) Proc. Natl. Acad. Sci. USA, 82, 4616-4619) but also at other sequences which may represent putative cis-DDP-DNA adducts.  相似文献   

17.
A number of error-prone DNA polymerases is found among eukaryotes from yeasts up to mammalia including humans. According to the partial homology of a primary structure, they are united in families B, X, Y and display high infidelity on uninjured DNA-template, whereas they are rather accurate on DNA injuries. These DNA polymerases are characterized by the probability of base substitutions or frame shifts of 10(-3) to 7.5 x 10(-1) on DNA injuries, whereas the probability of spontaneous mutagenesis per replicated nucleotide accounts 10(-10) - 10(-12). Inaccurate DNA polymerases are terminal deoxynucleotidyl transferase (TdT), DNA polymerases beta, zeta, kappa, eta, iota, lamda, mu, and Rev1. Their principal properties are described in this review. All of the polymerases under study are deprived of the corrective 3'-->5' exonucleolytic activity. The specialization of these polymerases is contained in the capability to synthesize opposite DNA lesions (not eliminated by multiple repair systems) that is explained by the flexibility of their active sites or by the limited capability to exhibit the TdT activity. Classic DNA polymerases alpha, delta, epsilon, and gamma cannot elongate the primers with mismatched nucleotides on their 3'-ends (that leads to the replication block), whereas some of the specialized polymerases can do it. It is accompanied by the overcoming of a replication block, often with the expense of an elevated mutagenesis. How can a cell live under the conditions of such a huge infidelity of many DNA polymerases? Error-prone DNA polymerases are not found in all tissues though some of them are essential for an organism survival. Furthermore, cells must not allow for these polymerases to work effectively on uninjured DNA. After bypass of a lesion on DNA-template, it is necessary, as soon as possible, to switch catalysis of the DNA synthesis from the specialized polymerases on the relatively accurate DNA polymerases delta and epsilon (fidelity of 10(-5) - 10(-6)). It is made by the formation of the complexes of polymerases delta or epsilon with PCNA and replicative factors RP-A and RF-C. Such highly processive complexes manifest the bigger affinity to the correct primers than the specialized DNA polymerases do. The switching is stimulated by distributivity or weak processivity of the specialized DNA polymerases. The accuracy of these polymerases are augmented by the action of the corrective 3'-exonucleolytic function of DNA polymerases delta and epsilon as well as by the autonomous 3'-->5' exonucleases which are widespread among the representatives of the whole phylogenetic tree. Exonucleolytic correction slows down the replication in the presence of lesions in DNA-template but makes the replication more accurate that decreases the probability of mutagenesis and carcinogenesis.  相似文献   

18.
DNA replication is frequently hindered because of the presence of DNA lesions induced by endogenous and exogenous genotoxic agents. To circumvent the replication block, cells are endowed with multiple specialized DNA polymerases that can bypass a variety of DNA damage. To better understand the specificity of specialized DNA polymerases to bypass lesions, we have constructed a set of derivatives of Salmonella typhimurium TA1538 harboring plasmids carrying the polB, dinB or mucAB genes encoding Escherichia coli DNA polymerase II, DNA polymerase IV or DNA polymerase RI, respectively, and examined the mutability to 30 chemicals. The parent strain TA1538 possesses CGCGCGCG hotspot sequence for -2 frameshift. Interestingly, the chemicals could be classified into four groups based on the mutagenicity to the derivatives: group I whose mutagenicity was highest in strain YG5161 harboring plasmid carrying dinB; group II whose mutagenicity was almost equally high in strain YG5161 and strain TA98 harboring plasmid carrying mucAB; group III whose mutagenicity was highest in strain TA98; group IV whose mutagenicity was not affected by the introduction of any of the plasmids. Introduction of plasmid carrying polB did not enhance the mutagenicity except for benz[a]anthracene. We also introduced a plasmid carrying polA encoding E. coli DNA polymerase I to strain TA1538. Strikingly, the introduction of the plasmid reduced the mutagenicity of chemicals belonging to groups I, II and III, but not the chemicals of group IV, to the levels observed in the derivative whose SOS-inducible DNA polymerases were all deleted. These results suggest that (i) DNA polymerase IV and DNA polymerase RI possess distinct but partly overlapping specificity to bypass lesions leading to -2 frameshift, (ii) the replicative DNA polymerase, i.e., DNA polymerase III, participates in the mutagenesis and (iii) the enhanced expression of E. coli polA may suppress the access of Y-family DNA polymerases to the replication complex.  相似文献   

19.
We confirm that 8-methoxypsoralen (8-MOP) in the dark induces frameshift mutations in both Escherichia coli and Salmonella typhimurium when present in adequate concentration under growth conditions. The dose response is sigmoidal with a threshold or quasi-threshold at concentrations below about 10 microgram/ml. Frameshift mutagenesis by 8-MOP in the dark is unaffected by mutations at the uvrA or uvrB genes, in contrast to base pair substitution mutagenesis by 8-MOP plus near UV light. RecA (but not recB) bacteria are hypersensitive to the growth-inhibiting action of 8-MOP in the dark and are not detectably mutagenized. The characteristics of 8-MOP dark mutagenesis are consistent with the chemical interacting in a non-covalent manner with DNA and affecting the rate of occurrence of base deletions or insertions during DNA replication. The question of extrapolation of the genetic effect of 8-MOP to man is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号