首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Knowledge of the physical and chemical conditions on the primeval Earth is important for the study of the origin of the biosphere. This paper discusses the latest modification of the theory of the origin of the Earth and other planets. Possible consequences of the formation of the Sun in the area of the star formation closely surrounded by neighboring young stars are considered. The classical problem of the rate of accretion of Earth and other planets is generalized with new estimates allowing the correlation of the results from long-lived (U-Pb) and short-lived (Hf-W) space-chronometers. A model of the early evolution of the Earth, based on both dynamic estimates and the latest geochemical data (earliest Australian zircons, relict xenon pleiad) is discussed. The problems of the theory of early Earth’s evolution, which so far cannot be adequately solved, are discussed.  相似文献   

4.
It is well known that the contribution of Alfred Russell Wallace (1823–1913) to the development of the “Darwinian” principle of natural selection has often been neglected. Here we focus on how the three anniversaries to celebrate the origin of the Darwin–Wallace theory in Germany in 1909, in 1959 in the divided country, as well as in 2009, have represented Charles Robert Darwin’s and Alfred Russell Wallace’s contributions. We have analyzed books and proceedings volumes related to these anniversaries, and the main result is that Wallace was almost always ignored, or only mentioned in passing. In 1909, Ernst Haeckel gave a talk in Jena, later published under the title The worldview of Darwin and Lamarck (Das Weltbild von Darwin und Lamarck), but not as the Darwin–Wallace concept. Haeckel mentions Wallace only once. In two important proceedings volumes from the 1959 anniversaries, Wallace was ignored. The only fair treatment of Wallace is given in another book, a collection of documents edited by Gerhard Heberer, for which the author selected nine key documents and reprinted excerpts (1959). Three of them were articles by Wallace, including the Sarawak- and Ternate-papers of 1855 and 1858, respectively. An analysis of the dominant themes during the celebrations of 2009 shows that none of the six topics had much to do with Wallace and his work. Thus, the tendency to exclude Alfred Russell Wallace is an international phenomenon, and largely attributable to the “Darwin industry”.  相似文献   

5.
Darwin's theory of evolution by natural selection has been supported by molecular evidence and by experimental evolution of viruses. However, it might not account for the evolution of all life, and an alternative model of evolution through symbiotic relationships also has gained support. In this review, the evolution of plant viruses has been reinterpreted in light of these two seemingly opposing theories by using evidence from the earliest days of plant virology to the present. Both models of evolution probably apply in different circumstances, but evolution by symbiotic association (symbiogenesis) is the most likely model for many evolutionary events that have resulted in rapid changes or the formation of new species. In viruses, symbiogenesis results in genomic reassortment or recombination events among disparate species. These are most noticeable by phylogenetic comparisons of extant viruses from different taxonomic groups.  相似文献   

6.
In 1905, the Russian biologist C. Mereschkowsky postulated that plastids (e.g., chloroplasts) are the evolutionary descendants of endosymbiotic cyanobacteria-like organisms. In 1927, I. Wallin explicitly postulated that mitochondria likewise evolved from once free-living bacteria. Here, we summarize the history of these endosymbiotic concepts to their modern-day derivative, the “serial endosymbiosis theory”, which collectively expound on the origin of eukaryotic cell organelles (plastids, mitochondria) and subsequent endosymbiotic events. Additionally, we review recent hypotheses about the origin of the nucleus. Model systems for the study of “endosymbiosis in action” are also described, and the hypothesis that symbiogenesis may contribute to the generation of new species is critically assessed with special reference to the secondary and tertiary endosymbiosis (macroevolution) of unicellular eukaryotic algae.  相似文献   

7.
Weismann’s ideas on species transmutation were first expressed in his famous debate with Moritz Wagner on the mechanism of speciation. Wagner suggested that the isolation of a colony from its original source is a preliminary and necessary factor for speciation. Weismann accepted a secondary, facilitating role for isolation, but argued that natural and sexual selection are the primary driving forces of species transmutation, and are always necessary and often sufficient causes for its occurrence. The debate with Wagner, which occurred between 1868 and 1872 within the framework of Darwin’s discussions of geographical distribution, was Weismann’s first public battle over the mechanism of evolution. This paper, which offers the first comprehensive analysis of this debate, extends previous analyses and throws light on the underlying beliefs and motivations of these early evolutionists, focusing mainly on Weismann’s views and showing his commitment to what he later called “the all sufficiency of Natural Selection.” It led to the crystallization of his ideas on the central and essential role of selection, both natural and sexual, in all processes of evolution, and, already at this early stage in his theoretical thinking, was coupled with sophisticated and nuanced approach to biological organization. The paper also discusses Ernst Mayr’s analysis of the debate and highlights aspects of Weismann’s views that were overlooked by Mayr and were peripheral to the discussions of other historians of biology.  相似文献   

8.
With growing evidence for a heavy bombardment period ending 4–3.8 billion years ago, meteorites and comets may have been an important source of prebiotic carbon, nitrogen, and phosphorus on the early Earth. Life may have originated shortly after the late-heavy bombardment, when concentrations of organic compounds and reactive phosphorus were enough to “kick life into gear”. This work quantifies the sources of potentially prebiotic, extraterrestrial C, N, and P and correlates these fluxes with a comparison to total Ir fluxes, and estimates the effect of atmosphere on the survival of material. We find (1) that carbonaceous chondrites were not a good source of organic compounds, but interplanetary dust particles provided a constant, steady flux of organic compounds to the surface of the Earth, (2) extraterrestrial metallic material was much more abundant on the early Earth, and delivered reactive P in the form of phosphide minerals to the Earth’s surface, and (3) large impacts provided substantial local enrichments of potentially prebiotic reagents. These results help elucidate the potential role of extraterrestrial matter in the origin of life.  相似文献   

9.
In the late 19th century, the evolutionary approach to the problem of ageing was initiated by August Weismann, who argued that natural selection was more important for ageing than any physiological mechanism. In the mid-twentieth century, J. B. S. Haldane, P. B. Medawar and G. C. Williams informally argued that the force of natural selection falls with adult age. In 1966, W. D. Hamilton published formal equations that showed mathematically that two’ forces of natural selection’ do indeed decline with age, though his analysis was not genetically explicit. Brian Charlesworth then developed the required mathematical population genetics for the evolution of ageing in the 1970’s. In the 1980’s, experiments using Drosophila showed that the rate of ageing evolves as predicted by Hamilton’s’ forces of natural selection’. The discovery of the cessation of ageing late in life in the 1990’s was followed by its explanation in terms of evolutionary theory based on Hamilton’s forces. Recently, it has been shown that the cessation of ageing can also be manipulated experimentally using Hamilton’s’ forces of natural selection’. Despite the success of evolutionary research on ageing, mainstream gerontological research has largely ignored both this work and the opportunity that it provides for effective intervention in ageing.  相似文献   

10.
During 2009, while we were celebrating Charles Darwin and his The origin of species, sadly, little was said about the critical contribution of Alfred Russel Wallace (1823–1913) to the development of the theory of evolution. Like Darwin, he was a truly remarkable nineteenth century intellect and polymath and, according to a recent book by Roy Davies (The Darwin conspiracy: origins of a scientific crime), he has a stronger claim to the Theory of Evolution by Natural Selection than has Darwin. Here we present a critical comparison between the contributions of the two scientists. Sometimes referred to as ‘The other beetle-hunter’ and largely neglected for many decades, Wallace had a far greater experience of collecting and investigating animals and plants from their native habitats than had Darwin. He was furthermore much more than a pioneer biogeographer and evolutionary theorist, and also made contributions to anthropology, ethnography, geology, land reform and social issues. However, being a more modest, self-deprecating man than Darwin, and lacking the latter’s establishment connections, Wallace’s contribution to the theory of evolution was not given the recognition it deserved and he was undoubtedly shabbily treated at the time. It is time that Wallace’s relationship with Darwin is reconsidered in preparation for 2013, the centenary of Wallace’s death, and he should be recognized as at least an equal in the Wallace-Darwin theory of evolution.  相似文献   

11.
In his Origin of Species (John Murray, London, 1859), Charles Darwin described the theory of descent with modification by means of natural selection and postulated that all life may have evolved from one or a few simple kinds of organisms. However, Darwin’s concept of evolutionary change is entirely based on observations of populations of animals and plants. He briefly mentioned ‘lower algae’, but ignored amoebae, bacteria and other micro-organisms. In 1859, Anton de Bary, the founder of mycology and plant pathology, published a seminal paper on the biology and taxonomy of the plasmodial slime molds (myxomycetes). These heterotrophic protists are known primarily as a large composite mass, the plasmodium, in which single nuclei are suspended in a common ‘naked’ cytoplasm that is surrounded by a plasma membrane. Here we summarize the contents of de Bary’s 1859 publication and highlight the significance of this scientific classic with respect to the establishment of the kingdom Protoctista (protists such as amoebae), the development of the protoplasmic theory of the cell, the introduction of the concept of symbiosis and the rejection of the dogma of spontaneous generation. We describe the life cycle of the myxomycetes, present new observations on the myxamoebae and propose a higher-order phylogeny based on elongation factor-1 alpha gene sequences. Our results document the congruence between the morphology-based taxonomy of the myxomycetes and molecular data. In addition, we show that free-living amoebae, common protists in the soil, are among the closest living relatives of the myxomycetes and conclude that de Bary’s ‘Amoeba-hypothesis’ on the evolutionary origin of the plasmodial slime molds may have been correct.  相似文献   

12.
The ecological genetics of homoploid hybrid speciation   总被引:1,自引:0,他引:1  
Our understanding of homoploid hybrid speciation has advanced substantially since this mechanism of species formation was codified 50 years ago. Early theory and research focused almost exclusively on the importance of chromosomal rearrangements, but it later became evident that natural selection, specifically ecological selection, might play a major role as well. In light of this recent shift, we present an evaluation of ecology's role in homoploid hybrid speciation, with an emphasis on the genetics underlying ecological components of the speciation process. We briefly review new theoretical developments related to the ecology of homoploid hybrid speciation; propose a set of explicit, testable questions that must be answered to verify the role of ecological selection in homoploid hybrid speciation; discuss published work with reference to these questions; and also report new data supporting the importance of ecological selection in the origin of the homoploid hybrid sunflower species Helianthus deserticola. Overall, theory and empirical evidence gathered to date suggest that ecological selection is a major factor promoting homoploid hybrid speciation, with the strongest evidence coming from genetic studies.  相似文献   

13.
Maynard Smith’s defenses of adaptationism and of the value of optimization theory in evolutionary biology are both criticized. His defense does not adequately respond to the criticism of adaptationism by Gould and Lewontin. It is also argued here that natural selection cannot be interpreted as an optimization process if the objective function to be optimized is either (i) interpretable as a fitness, or (ii) correlated with the mean population fitness. This result holds even if fitnesses are frequency-independent; the problem is further exacerbated in the frequency-dependent context modeled by evolutionary game theory. However, Eshel and Feldman’s new results on “long-term” evolution may provide some hope for the continuing relevance of the game-theoretic framework. These arguments also demonstrate the irrelevance of attempts by Intelligent Design creationists to use computational limits on optimization algorithms as evidence against evolutionary theory. It is pointed out that adaptation, natural selection, and optimization are not equivalent processes in the context of biological evolution. It is a pleasure to dedicate this paper to the memory of John Maynard Smith. Thanks are due to James Justus and Samir Okasha for comments on an earlier draft.  相似文献   

14.
The analogy between artificial selection of domestic varieties and natural selection in nature was a vital element of Darwin’s argument in his Origin of Species. Ever since, the image of breeders creating new varieties by artificial selection has served as a convincing illustration of how the theory works. In this paper I argue that we need to reconsider our understanding of Darwin’s analogy. Contrary to what is often assumed, nineteenth-century animal breeding practices constituted a highly controversial field that was fraught with difficulties. It was only with considerable effort that Darwin forged his analogy, and he only succeeded by downplaying the importance of two other breeding techniques – crossing of varieties and inbreeding – that many breeders deemed essential to obtain new varieties. Part of the explanation for Darwin’s gloss on breeding practices, I shall argue, was that the methods of his main informants, the breeders of fancy pigeons, were not representative of what went on in the breeding world at large. Darwin seems to have been eager to take the pigeon fanciers at their word, however, as it was only their methods that provided him with the perfect analogy with natural selection. Thus while his studies of domestic varieties were important for the development of the concept of natural selection, the reverse was also true: Darwin’s comprehension of breeding practices was moulded by his understanding of the working of natural selection in nature. Historical studies of domestic breeding practices in the eighteenth and nineteenth century confirm that, besides selection, the techniques of inbreeding and crossing were much more important than Darwin’s interpretation allowed for. And they still are today. This calls for a reconsideration of the pedagogic use of Darwin’s analogy too.  相似文献   

15.
The performance of non-parametric species richness estimators (Program SPADE) was assessed by applying them to fish from two lowland waterways in Poland: (1) a stream sampled annually at one site for 23 years (13 of which were after the stream was turned into a canal), and (2) a river sampled twice annually at two sites (one natural, the other impounded) for 16 years. On each sampling occasion consecutive electrofishing runs were made and the species richness of the total sample (obtained in all the runs) was predicted by each estimator from the sub-sample of the first run. The estimators were applied to all of the samples collected in each waterway, which were referred to as the ‘rich group survey’ selection, and to two smaller selections, named the ‘improved survey’ and ‘complete survey’. The performance was evaluated using the measures PAR (percent of actual richness) and SRMSE (scaled root mean square error). Overall, the HM and Chao1-bc estimators were decisively better than others, and ACE1 and ACE were decisively worse both in terms of PAR and SRMSE. In the stream, the bed regulation little affected the performance of the estimators, but they were more correct when applied to the ‘improved survey’ selection rather than to the ‘rich group survey’ selection. In the river, the performance of most of the estimators, both in terms of PAR and SRMSE, was much improved only by selecting those samples for analysis that complied with the Chao-2 criterion (i.e., ‘complete survey’ selection).  相似文献   

16.
The classical theory of descent with modification by means of natural selection had no mother, but did have two English fathers, Charles Darwin (1809–1882) and Alfred Russel Wallace (1823–1913). In 1858,the Linnean Society of London published two contributions of these naturalists and acknowledged both authors as the proponents of a novel hypothesis on the driving force of organismic evolution. In the present report the most important sections of the Darwin-Wallace papers are summarized. This close reading of both publications reveals six striking differences in emphasis: Darwin and Wallace did not propose identical ideas. The species definitions of both authors are described and the further development of the concept of natural selection in wild populations is reviewed. It is shown that the contributions of A.R. Wallace, who died 90 years ago, are more significant than usually acknowledged. I conclude that natural selection's lesser known co-discoverer should be regarded as one of the most important pioneers of evolutionary biology, whose original contributions are underestimated by most contemporary scientists.  相似文献   

17.
Seventy-five years ago, the geneticist Richard Goldschmidt hypothesized that single mutations affecting development could result in major phenotypic changes in a single generation to produce unique organisms within animal populations that he called “hopeful monsters”. Three decades ago, Sarah P. Gibbs proposed that photosynthetic unicellular micro-organisms like euglenoids and dinoflagellates are the products of a process now called “secondary endosymbiosis” (i.e., the evolution of a chloroplast surrounded by three or four membranes resulting from the incorporation of a eukaryotic alga by a eukaryotic heterotrophic host cell). In this article, we explore the evidence for Goldschmidt’s “hopeful monster” concept and expand the scope of this theory to include the macroevolutionary emergence of organisms like Euglena and Chlorarachnion from secondary endosymbiotic events. We argue that a Neo-Goldschmidtian perspective leads to the conclusion that cell chimeras such as euglenids and dinoflagellates, which are important groups of phytoplankton in freshwater and marine ecosystems, should be interpreted as “successful monsters”. In addition, we argue that Charles Darwin had euglenoids (infusoria) in mind when he speculated on the “primordial intermediate form”, although his Proto-Euglena-hypothesis for the origin of the last common ancestor of all forms of life is no longer acceptable.  相似文献   

18.
Prior to the contribution of genetics or the modern evolutionary synthesis (MES) to natural selection theory, social ecologists searched for factors in addition to natural selection that could influence species change. The idea that sociality, not just biology, was important in determining evolutionary outcomes was prevalent in research in social ecology in the 1920s and 1930s. The influence of ‘tradition’ (or the transmission of learned behaviours between generations) and the view that animals are active in selecting their own environments, rather than passive organisms acted upon by chance, were given as much attention as natural selection theory in European ecology, while animal aggregation and cooperation studies were pursued in America. Imanishi Kinji’s personal library and his scientific notes and papers reveal that he was well aware of this literature and had been profoundly influenced by these earlier viewpoints prior to writing his view of nature in his first book, Seibutsu no Sekai (The World of Living Things, 1941). Evidence is presented to show that he developed his theories based partly on early western debates in social ecology while finding inspiration and a way to express his views in the writings of philosopher Nishida Kitarō and, perhaps, General J C Smuts. One of Imanishi’s lasting contributions is in the demonstrated results of over 40 years of subsequent ecological and ethological research by Imanishi and those trained by him that maintained the broader viewpoints on evolution that had been dropped from the western corpus of research by the 1950s. The current attempt to again get beyond natural selection theory is reflected in debates surrounding genetic and cultural evolution of cooperation, the biology of ‘traditions’ and the idea of ‘culture’ in animal societies. Imanishi Kinji is the Japanese name order, with family name first. Other Japanese names in the text are also written with family name first. A modified version of this paper appeared in Japanese in Seibutsu Kagaku, Vol. 57 No. 3, April 2006, pp 142–149.  相似文献   

19.
Why was sexual selection so important to Darwin? And why was it de-emphasized by almost all of Darwin's followers until the second half of the 20th century? These two questions shed light on the complexity of the scientific tradition named “Darwinism”. Darwin's interest in sexual selection was almost as old as his discovery of the principle of natural selection. From the beginning, sexual selection was just another “natural means of selection”, although different from standard “natural selection” in its mechanism. But it took Darwin 30 years to fully develop his theory, from the early notebooks to the 1871 book The Descent of Man, and Selection in Relation to Sex. Although there is a remarkable continuity in his basic ideas about sexual selection, he emphasized increasingly the idea that sexual selection could oppose the action of natural selection and be non adaptive. In time, he also gave more weight to mate choice (especially female choice), giving explicit arguments in favor of psychological notions such as “choice” and “aesthetic sense”. But he also argued that there was no strict demarcation line between natural and sexual selection, a major difficulty of the theory from the beginning. Female choice was the main reason why Alfred Russel Wallace, the co-discoverer of the principle of natural selection, engaged in a major controversy with Darwin about sexual selection. Wallace was suspicious about sexual selection in general, trying to minimize it by all sorts of arguments. And he denied entirely the existence of female choice, because he thought that it was both unnecessary and an anthropomorphic notion. This had something to do with his spiritualist convictions, but also with his conception of natural selection as a sufficient principle for the evolutionary explanation of all biological phenomena (except for the origin of mind). This is why Wallace proposed to redefine Darwinism in a way that excluded Darwin's principle of sexual selection. The main result of the Darwin–Wallace controversy was that most Darwinian biologists avoided the subject of sexual selection until at least the 1950 s, Ronald Fisher being a major exception. This controversy still deserves attention from modern evolutionary biologists, because the modern approach inherits from both Darwin and Wallace. The modern approach tends to present sexual selection as a special aspect of the theory of natural selection, although it also recognizes the big difficulties resulting from the inevitable interaction between these two natural processes of selection. And contra Wallace, it considers mate choice as a major process that deserves a proper evolutionary treatment. The paper's conclusion explains why sexual selection can be taken as a test case for a proper assessment of “Darwinism” as a scientific tradition. Darwin's and Wallace's attitudes towards sexual selection reveal two different interpretations of the principle of natural selection: Wallace's had an environmentalist conception of natural selection, whereas Darwin was primarily sensitive to the element of competition involved in the intimate mechanism of any natural process of selection. Sexual selection, which can lack adaptive significance, reveals this exemplarily.  相似文献   

20.
This article considers natural signs and their role in the origin of language. Natural signs, sometimes called primary signs, are connected with their signified by causal relationships, concomitance, or likeliness. And their acquisition is directed by both objective reality and past experience (memory). The discovery and use of natural signs is a required prerequisite of existence for any living systems because they are indispensable to movement, the search for food, regulation, communication, and many other information-related activities. It is argued that the birth of conventional signs, sometimes called secondary signs, was determined by a connotative use of natural signs and that, regulated and maintained by them, human language developed. At the same time, the origin and development of human language presupposes a ‘rational turn’ from the given and external reality of natural signs to the rationally constructed reality of artificial signs and rules that are internally maintained by the subjects’ deliberate activities, and actual and inherited social tradition (social memory). In view of this, language is defined as a dynamic system that must both be natural and artificial, empirical and a priori, inductive and deductive. This bilateral origin and regulation of language is the dual-inference of language.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号