共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoshiba N Yoshiba K Ohkura N Shigetani Y Takei E Hosoya A Nakamura H Okiji T 《Histochemistry and cell biology》2012,138(4):583-592
Recent studies have employed two markers, alpha-smooth muscle actin (α-SMA) and STRO-1, to detect cells with mesenchymal stem cell properties in dental pulp. The present study aimed to explore the expression profile of α-SMA and STRO-1 in intact dental pulp as well as during wound healing in adult dental pulp tissue. Healthy pulps were mechanically exposed and capped with the clinically used materials MTA (ProRoot White MTA) or Ca(OH)(2) to induce a mineralized barrier at the exposed surface. After 7-42?days, the teeth were extracted and processed for immunohistochemical analysis using antibodies against α-SMA, STRO-1 and nestin (a neurogenic cytoskeletal protein expressed in odontoblasts). In normal pulp, α-SMA was detected in vascular smooth muscle cells and pericytes. Double immunofluorescent staining with STRO-1 and α-SMA showed that STRO-1 was localized in vascular smooth muscle cells, pericytes and endothelial cells, in addition to nerve fibers. During the process of dental pulp healing, numerous α-SMA-positive cells emerged at the wound margin at 14?days, and the initially formed mineralized barrier was lined with α-SMA-positive cells similar in appearance to reparative odontoblasts, some of which co-expressed nestin. STRO-1 was abundant in nerve fibers. In the advanced stage of mineralized barrier formation at 42?days, cells lining the barrier were stained with nestin, and no staining of α-SMA was detected in those cells. These observations indicate that α-SMA-positive cells temporarily appear along the wound margin during the earlier phase of mineralized barrier formation and STRO-1 is confined in vascular and neuronal elements. 相似文献
2.
Matrix metalloproteinase (MMP) and TGF-β1-stimulated cell migration in skin and cornea wound healing
《Cell Adhesion & Migration》2013,7(4):252-253
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGF-β) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGF-β-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins, and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways. 相似文献
3.
Basic fibroblast growth factor (basic FGF) has pivotal roles in the function of various cell types. Here, we report the effects of basic FGF in the regulation of dental pulp stem cell (DPSC) behaviors including maintaining stemness and directing differentiation. Cells isolated from human dental pulp tissues exhibited stem cell properties including the expression of mRNA markers for embryonic and mesenchymal stem cells, the expression of Stro-1, and the multipotential differentiation. Basic FGF stimulated colony-forming units of DPSCs and up-regulated the expression of the embryonic stem cell markers; Oct4, Rex-1, and Nanog. Moreover, osteogenic medium containing basic FGF inhibited alkaline phosphatase enzymatic activity and mineralization of DPSCs. On the contrary, basic FGF appeared to be an influential growth factor in the neurogenic differentiation of DPSCs. In the presence of basic FGF, increased DPSCs neurosphere size and the up-regulation of neurogenic markers were noted. Inhibitors of FGFR or PLCγ were able to ablate the basic FGF-induced neuronal differentiation of DPSCs. Taken together, these results suggest basic FGF may be involved in the mechanisms controlling DPSCs cell fate decisions. 相似文献
4.
Eva Martini Evelyn Schneider Clemens Neufert Markus F. Neurath 《Cell cycle (Georgetown, Tex.)》2016,15(21):2875-2881
As an inhibitor of apoptosis (IAP) family member, Survivin is known for its role during regulation of apoptosis. More recently its function as a cell cycle regulator has become evident. Survivin was shown to play a pivotal role during embryonic development and is highly expressed in regenerative tissue as well as in many cancer types. We examined the function of Survivin during mouse intestinal organogenesis and in gut pathophysiology. We found high expression of Survivin in experimentally induced colon cancer in mice but also in colon tumors of humans. Moreover, Survivin was regulated by TGF-β and was found to be highly expressed during mucosal healing following intestinal inflammation. We identified that expression of Survivin is essential early on in life, as specific deletion of Survivin in Villin expressing cells led to embryonic death around day 12 post coitum. Together with our recent study on the role of Survivin in the gut of adult mice our data demonstrate that Survivin is an essential guardian of embryonic gut development and adult gut homeostasis protecting the epithelium from cell death promoting the proliferation of intestinal stem and progenitor cells. 相似文献
5.
6.
7.
This study was conducted to investigate the proliferative effect of vegetable soy peptides on adult stem cells (ASCs) in the absence of serum and their possible mechanisms of action. The proliferation of human adipose tissue-derived mesenchymal stem cells (ADSCs) and cord blood-derived mesenchymal stem cells (CB-MSCs) treated with soy peptides was found to increase significantly upon 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Click-iT 5-ethynyl-2'-deoxyuridine flow cytometry assay. In addition, soy peptides led to stepwise phosphorylation of the p44/42 MAPK (ERK), mammalian target of rapamycin (mTOR), p70 S6 kinase, S6 ribosomal protein (S6RP) and eukaryotic initiation factor 4E (eIF4E) in ADSCs. Furthermore, quantitative analysis of the cytokines revealed that the production of transforming growth factor-beta1 (TGF-β1), vascular endothelial growth factor and interleukin-6 increased significantly in response to treatment with soy peptides in both ADSCs and CB-MSCs. Similarly, soy peptide-induced phosphorylation of the ERK/mTOR/S6RP/eIF4E pathway was blocked in response to pretreatment with PD98059, a specific ERK inhibitor. Moreover, inhibition of TGF-β1 through PD98059 pretreatment and a consecutive decrease in ADSC proliferation revealed that TGF-β1 induces the phosphorylation of mTOR/S6RP/eIF4E. Collectively, the results of this study indicate that ERK-dependent production of TGF-β1 plays a crucial role in the soy peptide-induced proliferation of ADSCs under serum-free conditions. 相似文献
8.
Bhang SH Jeon JY La WG Seong JY Hwang JW Ryu SE Kim BS 《Biotechnology and applied biochemistry》2011,58(4):271-276
This study was designed to evaluate the additive effects of transforming growth factor-beta3 (TGF-β3) and hyaluronic acid (HA) on chondrogenic differentiation of human mesenchymal stem cells (hMSCs). The hMSCs were cultured on collagen type I-, HA-, or fibronectin-coated cell culture dishes with or without TGF-β3 added to the culture medium. Four weeks after cell culture, chondrogenic differentiation of hMSCs was determined by evaluating the expression of cartilage-specific markers using real-time polymerase chain reaction, immunocytochemistry, and Western blot analysis. hMSCs cultured on HA-coated dishes with TGF-β3 supplementation revealed a prominent increase in collagen type II, aggrecan, and Sox9. When hMSCs were cultured without TGF-β3 supplementation, only hMSCs cultured on HA-coated dishes showed prominent expression of the cartilage-specific markers. This study shows that chondrogenic differentiation of hMSCs can be enhanced additively by interactions with both a specific cell-adhesion matrix and a soluble growth factor. 相似文献
9.
Hidenori Kasai Jeremy T Allen Roger M Mason Takashi Kamimura Zhi Zhang 《Respiratory research》2005,6(1):56
Background
Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT.Methods
A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA.Results
The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes.Conclusion
Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon. 相似文献10.
Fujii S Maeda H Tomokiyo A Monnouchi S Hori K Wada N Akamine A 《Cell and tissue research》2010,342(2):233-242
Periodontal ligament (PDL) is a specialized connective tissue that influences the lifespan of the tooth. Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine, but little is known about the effects of TGF-β1 on PDL cells. Our aim has been to demonstrate the expression of TGF-β1 in rat PDL tissues and to evaluate its effects on the proliferation and gene expression in human PDL cells (HPLCs) and a human PDL stem/progenitor cell line, line 1-11, that we have recently developed. The expression of TGF-β1 in the entire PDL tissue was confirmed immunohistochemically, and both HPLCs and cell line 1-11 expressed mRNA from the TGF-β1, TGF-β type I receptor, and TGF-β type II receptor genes. Although exogenous TGF-β1 stimulated the proliferation of HPLCs, it did not upregulate the expression of alpha-smooth muscle actin (α-SMA), type I collagen (Col I), or fibrillin-1 (FBN1) mRNA or of α-SMA protein in HPLCs, whereas expression for these genes was attenuated by an anti-TGF-β1 neutralizing antibody. In contrast, exogenous TGF-β1 reduced the proliferation of cell line 1-11, although it upregulated the expression of α-SMA, Col I, and FBN1 mRNA and of α-SMA protein in this cell line. In addition, interleukin-1 beta stimulation significantly reduced the expression of TGF-β1 mRNA and protein in HPLCs. Thus, TGF-β1 seems to play an important role in inducing fibroblastic differentiation of PDL stem/progenitor cells and in maintaining the PDL apparatus under physiological conditions. 相似文献
11.
Claus Lattrich Anette Stegerer Julia Häring Susanne Schüler Olaf Ortmann Oliver Treeck 《Steroids》2013,78(2):195-202
Expression of estrogen receptor β (ERβ) has been described to reduce growth of cancer cell lines derived from hormone-dependent tumors, like breast cancer. In this study we tested to what extent two ERβ agonists, androgen derivative 3β-Adiol and flavonoid Liquiritigenin, would affect growth and gene expression of different ERβ-positive human breast cancer cell lines. Under standard cell culture conditions, we observed 3β-Adiol to inhibit growth of MCF-7 cells in a dose-dependent manner, whereas growth of BT-474 and MCF-10A cells was suppressed by the maximum concentration (100 nM) only. When treated in serum-free medium, all cell lines except of MDA-MB-231 were responsive to 1 nM 3β-Adiol, and ZR75-1 cells exhibited a dose-dependent antiproliferative response. Providing putative mechanisms underlying the observed growth-inhibitory effect, expression of Ki-67 or cyclins A2 and B1 was downregulated after 3β-Adiol treatment in all responsive lines. In contrast, treatment with lower doses of Liquiritigenin did not affect growth. In MCF-7 cells, the highest dose of this flavonoid exerted proliferative effects accompanied by increased expression of cyclin B1, PR and PS2, indicating unspecific activation of ERα. In conclusion, the ERβ agonists tested exerted distinct concentration-dependent and cell line-specific effects on growth and gene expression. The observed inhibitory effects of 3β-Adiol on breast cancer cell growth encourage further studies on the potential of this and other ERβ agonists as targeted drugs for breast cancer therapy. 相似文献
12.
Yiru Xu Siliang Xue Jin Zhou John J. Voorhees Gary J. Fisher 《Molecular biology of the cell》2015,26(6):1199-1206
Receptor protein tyrosine phosphatase-κ (PTPRK) specifically and directly dephosphorylates epidermal growth factor receptor (EGFR), thereby limiting EGFR function in primary human keratinocytes. PTPRK expression is increased by the TGF-β/Smad3 pathway and cell–cell contact. Because the Notch receptor pathway is responsive to cell–cell contact and regulates keratinocyte growth and differentiation, we investigated the interplay between Notch and TGF-β pathways in regulation of PTPRK expression in human keratinocytes. Suppression of Notch signaling by γ-secretase inhibitors substantially reduced cell contact induction of PTPRK gene expression. In sparse keratinocyte cultures, addition of soluble Notch-activating ligand jagged one peptide (Jag1) induced PTPRK. Of interest, cell contact–induced expression of TGF-β1 and TGF-β receptor inhibitor SB431542 inhibited contact-induced expression of PTPRK. Furthermore, inhibition of Notch signaling, via knockdown of Notch1 or by γ-secretase inhibitors, significantly reduced TGF-β–induced PTPRK gene expression, indicating that Notch and TGF-β pathways function together to regulate PTPRK. Of importance, the combination of Jag1 plus TGF-β results in greater PTPRK expression and lower EGFR tyrosine phosphorylation than either ligand alone. These data indicate that Notch and TGF-β act in concert to stimulate induction of PTPRK, which suppresses EGFR activation in human keratinocytes. 相似文献
13.
14.
Shiozaki A Bai XH Shen-Tu G Moodley S Takeshita H Fung SY Wang Y Keshavjee S Liu M 《PloS one》2012,7(5):e38049
Epithelial-mesenchymal transition (EMT) is an important mechanism in carcinogenesis. To determine the mechanisms that are involved in the regulation of EMT, it is crucial to develop new biomarkers and therapeutic targets towards cancers. In this study, when TGFβ1 and TNFα were used to induce EMT in human lung carcinoma A549 cells, we found an increase in an epithelial cell tight junction marker, Claudin 1. We further identified that it was the TNFα and not the TGFβ1 that induced the fibroblast-like morphology changes. TNFα also caused the increase in Claudin-1 gene expression and protein levels in Triton X-100 soluble cytoplasm fraction. Down-regulation of Claudin-1, using small interfering RNA (siRNA), inhibited 75% of TNFα-induced gene expression changes. Claudin-1 siRNA effectively blocked TNFα-induced molecular functional networks related to inflammation and cell movement. Claudin-1 siRNA was able to significantly reduce TNF-enhanced cell migration and fibroblast-like morphology. Furthermore, over expression of Claudin 1 with a Claudin 1-pcDNA3.1/V5-His vector enhanced cell migration. In conclusion, these observations indicate that Claudin 1 acts as a critical signal mediator in TNFα-induced gene expression and cell migration in human lung cancer cells. Further analyses of these cellular processes may be helpful in developing novel therapeutic strategies. 相似文献
15.
16.
He Wang Tingting Ning Ci Song Xinghong Luo Shuaimei Xu Xiaoyi Zhang Zilong Deng Dandan Ma Buling Wu 《Journal of cellular physiology》2019,234(8):12897-12909
Our previous study showed that knocking down integrin α5 (ITGA5) expression by using a lentiviral vector in human dental pulp stem cells (DPSCs) led to weakening proliferation and migration capacity while enhanced odontogenic differentiation. To seek for possible clinical application, we investigated the effect of the ITGA5 priming synthetic cyclic peptide (SCP; GA-CRRETAWAC-GA) on proliferation, migration, and the odontogenic differentiation of DPSCs. Remarkably, the involved mechanism was explored by isobaric tag for relative and absolute quantitation proteomic technique, and the in vivo effect of ITGA5 was investigated by nude mice subcutaneous transplantation of cell and hydroxyapatite/β-tricalcium phosphate complex. Results showed that SCP weakened the proliferation and migration capacity while enhanced odontogenic differentiation of DPSCs as lentivirus. The phosphorylation of FAK, PI3K/AKT, and MEK1/2/ERK1/2, along with IGF2/IGFBP2 and Wnt/β-catenin signaling pathway play an important role in this process. Proteomic Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed the key role of extracellular matrix (ECM) and ECM-receptor activity pathway were involved. ECM constituents, secreted protein acidic and cysteine-rich (SPARC), lumican, vitronectin, prolargin, decorin, collagen type VI α1 chain (COL6A1), COL6A2, COL14A1, and COL5A1 were upregulated in the ITGA5-silenced group. Inhibited expression of ITGA5 in DPSCs increased osteoid tissue formation and stronger related genes expression in vivo. In conclusion, the ITGA5 priming peptide could promote DPSCs odontogenic differentiation as lentivirus. Proteomics and bioinformatic analysis revealed that this may be due to the deposition of ECM and amplified ECM-receptor activity, which could fuel the application process of utilizing priming ITGA5 on dental clinical practice. 相似文献
17.
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGFβ) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGFβ-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.Key words: wound healing, migration, matrix metalloproteinase, transforming growth factor, skin, corneaWound healing is a well-ordered but complex process involving many cellular activities including inflammation, growth factor or cytokine secretion, cell migration and proliferation. Migration of skin keratinocytes and corneal epithelial cells requires the coordinated expression of various growth factors such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), small GTPases, and macrophage stimulating protein (reviewed in refs. 1 and 2). The epithelial cells in turn regulate the expression of matrix metalloproteinases (MMPs), extracellular matrix (ECM) proteins and integrins during cell migration.1,3,4 TGF-β is a well-known cytokine involved in processes such as cell growth inhibition, embryogenesis, morphogenesis, tumorigenesis, differentiation, wound healing, senescence and apoptosis (reviewed in refs. 5 and 6). It is also one of the most important cytokines responsible for promoting the migration of skin keratinocytes and corneal epithelial cells.3,6,7TGFβ has two quite different effects on skin keratinocytes: it suppresses their multiplication and promotes their migration. The TGFβ-induced cell growth inhibition is usually mediated by Smad signaling, which upregulates expression of the cell cycle inhibitor p21WAF1/Cip1 or p12CDK2-AP1 in HaCaT skin keratinocyte cells and human primary foreskin keratinocytes.8,9 Keratinocyte migration in wounded skin is associated with strong expression of TGFβ and MMPs,1 and TGFβ stimulates the migration of manually scratched wounded HaCaT cells.10 TGFβ also induces cell migration and inhibits proliferation of injured corneal epithelial cells, whereas it stimulates proliferation of normal corneal epithelial cells via effects on the MAPK family and Smad signaling.2,7 Indeed, skin keratinocytes and corneal epithelial cells display the same two physiological responses to TGFβ during wound healing; cell migration and growth inhibition. However as mentioned above, TGFβ has a different effect on normal cells. For example, it induces the epithelial to mesenchymal transition (EMT) of normal mammary cells and lens epithelial cells.11,12 It also promotes the differentiation of corneal epithelial cells, and induces the fibrosis of various tissues.2,6The MMPs are a family of structurally related zinc-dependent endopeptidases that are secreted into the extracellular environment.13 Members of the MMP family have been classified into gelatinases, stromelysins, collagenases and membrane type-MMPs (MT-MMPs) depending on their substrate specificity and structural properties. Like TGFβ, MMPs influence normal physiological processes including wound healing, tissue remodeling, angiogenesis and embryonic development, as well as pathological conditions such as rheumatoid arthritis, atherosclerosis and tumor invasion.13,14The expression patterns of MMPs during skin and cornea wound healing are well studied. In rats, MMP-2, -3, -9, -11, -13 and -14 are expressed,15 and in mice, MMP-1, -2, -3, -9, -10 and -14 are expressed during skin wound healing.1 MMP-1, -3, -7 and -12 are increased in corneal epithelial cells during Wnt 7a-induced rat cornea wound healing.16 Wound repair after excimer laser keratectomy is characterized by increased expression of MMP-1, -2, -3 and -9 in the rabbit cornea, and MMP-2, -9 in the rat cornea.17,18 The expression of MMP-2 and -9 during skin keratinocyte and corneal epithelial cell migration has been the most thoroughly investigated, and it has been shown that their expression generally depends on the activity of MMP-14. MMP-14 (MT1-MMP) is constitutively anchored to the cell membrane; it activates other MMPs such as MMP-2, and also cleaves various types of ECM molecules including collagens, laminins, fibronectin as well as its ligands, the integrins.13 The latent forms of some cytokines are also cleaved and activated by MMP-14.19 Overexpression of MMP-14 protein was found to stimulate HT1080 human fibrosarcoma cell migration.20 In contrast, the attenuation of MMP-14 expression using siRNA method decreased fibroblast invasiveness,21 angiogenesis of human microvascular endothelial cells,22 and human skin keratinocyte migration.10 The latter effect was shown to result from lowering MMP-9 expression. Other studies have shown that EGF has a critical role in MMP-9 expression during keratinocyte tumorigenesis and migration.23,24 On the other hand, TGFβ modulates MMP-9 production through the Ras/MAPK pathway in transformed mouse keratinocytes and NFκB induces cell migration by binding to the MMP-9 promoter in human skin primary cultures.25,26 Enhanced levels of pro-MMP-9 and active MMP-9 have also been noted in scratched corneal epithelia of diabetic rats.27There is evidence that MMP-14 activates a number of intracellular signaling pathways including the MAPK family pathway, focal adhesion kinase (FAK), Src family, Rac and CD44, during cell migration and tumor invasion.19,20,28 In COS-7 cells, ERK activation is stimulated by overexpression of MMP-14 and is essential for cell migration.29 These observations all indicate that MMP-14 plays an important role in cell migration, not only by regulating the activity or expression of downstream MMPs but also by processing and activating migration-associated molecules such as integrins, ECMs and a variety of intracellular signaling pathays.30Cell migration during wound healing is a remarkably complex phenomenon. TGFβ is just one small component of the overall process of wound healing and yet it triggers a multitude of reactions needed for cell migration. It is important to know what kinds of molecules are expressed when cell migration is initiated, but it is equally important to investigate the roles of these molecules and how their expression is regulated. Despite the availability of some information about how MMPs and signaling molecules can influence each other, much remains to be discovered in this area. It will be especially important to clarify how MMP-14 influences other signaling pathways since its role in cell migration is not restricted to digesting ECM molecules but also includes direct or indirect activation of cellular signaling pathways. 相似文献
18.
Wu CM Li TM Hsu SF Su YC Kao ST Fong YC Tang CH 《Journal of cellular physiology》2011,226(12):3270-3277
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. Insulin-like growth factor-I (IGF)-I plays an important role in regulating cell growth, proliferation, survival, and metabolism. However, the effects of IGF-I in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that IGF-I increased the migration and the expression of α5β1 integrin in human chondrosarcoma cells. Pretreatment of cells with IGF-I receptor antibody reduced IGF-I-induced cell migration and integrin expression. Activations of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor-κB (NF-κB) pathways after IGF-I treatment were demonstrated, and IGF-I-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of PI3K, Akt, and NF-κB cascades. Taken together, our results indicated that IGF-I enhances the migration of chondrosarcoma cells by increasing α5β1 integrin expression through the IGF-I receptor/PI3K/Akt/NF-κB signal transduction pathway. 相似文献
19.