首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computer simulation of mass distribution within the model and Fourier transforms of images depicting mass distribution are explored for verification of two alternative modes of the myosin molecule arrangement within the vertebrate skeletal muscle thick filaments. The model well depicting the complete bipolar structure of the thick filament and revealing a true threefold-rotational symmetry is a tube covered by two helices with a pitch of 2 x 43 nm due to arrangement of the myosin tails along a helical path and grouping of all myosin heads in the crowns rotated by 240 degrees and each containing three cross-bridges separated by 0 degrees, 120 degrees, and 180 degrees. The cross-bridge crown parameters are verified by EM images as well as by optical and low-angle X-ray diffraction patterns found in the literature. The myosin tail arrangement, at which the C-terminus of about 43-nm length is near-parallel to the filament axis and the rest of the tail is quite strongly twisted around, is verified by the high-angle X-ray diffraction patterns. A consequence of the new packing is a new way of movement of the myosin cross-bridges, namely, not by bending in the hinge domains, but by unwrapping from the thick filament surface towards the thin filaments along a helical path.  相似文献   

2.
Electron micrographic tomograms of isometrically active insect flight muscle, freeze substituted after rapid freezing, show binding of single myosin heads at varying angles that is largely restricted to actin target zones every 38.7 nm. To quantify the parameters that govern this pattern, we measured the number and position of attached myosin heads by tracing cross-bridges through the three-dimensional tomogram from their origins on 14.5-nm-spaced shelves along the thick filament to their thin filament attachments in the target zones. The relationship between the probability of cross-bridge formation and axial offset between the shelf and target zone center was well fitted by a Gaussian distribution. One head of each myosin whose origin is close to an actin target zone forms a cross-bridge most of the time. The probability of cross-bridge formation remains high for myosin heads originating within 8 nm axially of the target zone center and is low outside 12 nm. We infer that most target zone cross-bridges are nearly perpendicular to the filaments (60% within 11 degrees ). The results suggest that in isometric contraction, most cross-bridges maintain tension near the beginning of their working stroke at angles near perpendicular to the filament axis. Moreover, in the absence of filament sliding, cross-bridges cannot change tilt angle while attached nor reach other target zones while detached, so may cycle repeatedly on and off the same actin target monomer.  相似文献   

3.
Using a 200 kV electron microscope (JEM 200 A), thick (up to 0.4 μm) crosssections of the myosin filaments of vertebrate striated muscle were studied. It was found that: (a) with increasing section thickness the cross-sectional profiles of the shaft of the filament were increasingly more triangular and in sections 0.4 μm thick each apex of the triangle was clearly blunted. This unique cross-sectional profile is predicted by the model proposed by Pepe (1966,1967) in which 12 parallel structural units are packed to form a triangular profile with a structural unit missing at each apex of the triangle. (b) With increasing section thickness the substructure of the myosin filament was enhanced, with the best substructure visible in sections 0.2 μm to 0.3 μm thick. This strongly supports parallel alignment of structural units in the shaft of the filament as proposed by Pepe (1966,1967). (c) The substructure spacing, determined by optical diffraction from electron micrographs of cross-sections of individual myosin filaments or groups of filaments is about 4 nm. (d) The different optical diffraction patterns observed from individual myosin filaments can be explained if the projection of each structural unit in the plane of the section has an elongated profile. With a substructure spacing of 4 nm an elongated cross-sectional profile could be produced by having two myosin molecules per structural unit. Models drawn with two myosin molecules per structural unit in the model proposed by Pepe (1966,1967) gave optical diffraction patterns similar to those observed from individual filaments. (e) The different optical diffraction patterns observed from individual myosin filaments can be explained if the elongated profiles in each structural unit are similarly oriented but with the orientation changing along the length of the filament. The change in orientation per unit length of the filament must be small enough to maintain an elongated profile for the projection of the structural unit in the plane of the sections 0.3 μm thick. All of these observations and conclusions strongly support the model for the myosin filament proposed by Pepe (1966,1967).  相似文献   

4.
By means of electron microscopy the longitudinal sections of chemically skinned fibres of rigorised rabbit psoas muscle have been examined at pH of rigorising solutions equal to 6, 7, 8 (I = 0.125) and ionic strengths equal to 0.04, 0.125, 0.34 (pH 7.0). It has been revealed that at pH 6.0 the bands of minor proteins localization in A-disks were seen very distinctly, while at pH 7.0 and I = 0.125 these bands can be revealed only by means of antibody labelling technique. At the ionic strength of 0.34 (pH 7.0) the periodicity of 14.3 nm in thick filaments was clearly observed, which was determined by packing of the myosin rods into the filament shaft and of the myosin heads (cross-bridges) on the filament surface. The number of cross-bridge rows in the filament equals 102. A new scheme of myosin cross-bridge distribution in thick filaments of rabbit psoas muscle has been suggested according to which two rows of cross-bridges at each end of a thick filament are absent. The filament length equals 1.64 +/- 0.01 micron. It has been shown that the length of thick filament as well as the structural organization of their end regions in rabbit psoas muscle and frog sartorius one are different.  相似文献   

5.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

6.
Titin and the sarcomere symmetry paradox   总被引:6,自引:0,他引:6  
Titin is thought to play a major role in myofibril assembly, elasticity and stability. A single molecule spans half the sarcomere and makes interactions with both a thick filament and the Z-line. In the unit cell structure of each half sarcomere there is one thick filament with 3-fold symmetry and two thin filaments with approximately 2-fold symmetry. The minimum number of titin molecules that could satisfy both these symmetries is 12. We determined the actual number of titin molecules in a unit cell from scanning transmission electron microscopy mass measurements of end-filaments. One of these emerges from each tip of the thick filament and is thought to be the in-register aggregate of the titin molecules associated with the filament. The mass per unit length of the end-filament (17.1 kDa/nm) is consistent with six titin molecules not 12. Thus the number of titin molecules present is insufficient to satisfy both symmetries. We suggest a novel solution to this paradox in which four of the six titin molecules interact with the two thin filaments in the unit cell, while the remaining two interact with the two thin filaments that enter the unit cell from the adjacent sarcomere. This arrangement would augment mechanical stability in the sarcomere.  相似文献   

7.
8.
Contractile filaments in skeletal muscle are moved by less than 2 nm for each ATP used. If just one cross-bridge is attached to each thin filament at any instant then this distance represents the fundamental myosin cross-bridge step size (i.e. the distance one cross-bridge moves a thin filament in one ATP-splitting cycle). However, most contraction models assume many cross-bridges are attached at any instant along each thin filament. The purpose of this study was to establish whether the net filament sliding per ATP used could be explained quantitatively in terms of a cross-bridge model in which multiple cross-bridges are attached along each thin filament. It was found that the relationship between net filament sliding per ATP split and the load against which the muscle shortens is compatible with such a model and furthermore predicts that the cross-bridge step size is between 7.5 and 12.5 nm over most of the range of loads. These values were similar for different muscle fibre types.  相似文献   

9.
It has long been believed that the periodic structure of the myosin helix is a consequence only of compressing the actin-myosin interaction sites. Here, we identify a length correspondence between the smallest helical unit on the thick filament and the helical pitch of the actin filaments in two different contractile muscles. This suggests a rotation/swing of the filaments that creates a new interaction unit in addition to the single interaction between an actin filament and a myosin head. Numerical characteristics of the single interaction are estimated from discussion about an in vivo interaction utilizing the new unit. The estimated twisted angle of the actin filaments is consistent with that calculated from its torsion rigidity and the evaluated step sizes per cross-bridge can be performed by a single bend of a myosin head. By comparing our evaluated step sizes with experimental results, we conclude that the most plausible mechanism at the force-recovery stage involves swings or rotations of both filaments in the same direction (clockwise).  相似文献   

10.
Structure and polymerization of Acanthamoeba myosin-II filaments   总被引:17,自引:13,他引:4  
Acanthamoeba myosin-II forms filaments of two different sizes. Thin bipolar filaments 7 nm wide and 200 nm long consist of 16 myosin-II molecules. Thick bipolar filaments of variable width (14-19 nm) consist of 40 or more myosin-II molecules. Both have a central bare zone 90 nm long and myosin heads projecting laterally at the ends. The heads are arranged in rows spaced 15 nm apart. In the case of the thin myosin-II filaments there are two molecules per row. The thick filaments are formed rapidly and reversibly in the presence of 6-10 mM MgCl2 (or any of five other different divalent cations tested) by the lateral aggregation of thin myosin-II filaments. Acid pH also favors thick filament formation. Neither the myosin-II concentration (50-1,000 micrograms/ml) nor ATP has an effect on the morphology of the filaments. The polymerization mechanism was studied quantitatively by measuring the amount of polymer formed (Cp) under various conditions as a function of total myosin-II concentration (Ct). Above a critical concentration of 15-40 micrograms/ml, Cp was proportional to Ct with a slope of 0.5-0.95 depending on conditions. In the range of 0.8-4.9 heavy chain phosphates per molecule, phosphorylation has no effect on the morphology of either the thin or thick myosin-II filaments and only a small effect on the extent of polymerization.  相似文献   

11.
Purification of native myosin filaments from muscle   总被引:1,自引:0,他引:1       下载免费PDF全文
Analysis of the structure and function of native thick (myosin-containing) filaments of muscle has been hampered in the past by the difficulty of obtaining a pure preparation. We have developed a simple method for purifying native myosin filaments from muscle filament suspensions. The method involves severing thin (actin-containing) filaments into short segments using a Ca(2+)-insensitive fragment of gelsolin, followed by differential centrifugation to purify the thick filaments. By gel electrophoresis, the purified thick filaments show myosin heavy and light chains together with nonmyosin thick filament components. Contamination with actin is below 3.5%. Electron microscopy demonstrates intact thick filaments, with helical cross-bridge order preserved, and essentially complete removal of thin filaments. The method has been developed for striated muscles but can also be used in a modified form to remove contaminating thin filaments from native smooth muscle myofibrils. Such preparations should be useful for thick filament structural and biochemical studies.  相似文献   

12.
We have used electron microscopy and solubility measurements to investigate the assembly and structure of purified human platelet myosin and myosin rod into filaments. In buffers with ionic strengths of less than 0.3 M, platelet myosin forms filaments which are remarkable for their small size, being only 320 nm long and 10-11 nm wide in the center of the bare zone. The dimensions of these filaments are not affected greatly by variation of the pH between 7 and 8, variation of the ionic strength between 0.05 and 0.2 M, the presence or absence of 1 mM Mg++ or ATP, or variation of the myosin concentration between 0.05 and 0.7 mg/ml. In 1 mM Ca++ and at pH 6.5 the filaments grow slightly larger. More than 90% of purified platelet myosin molecules assemble into filaments in 0.1 M KC1 at pH 7. Purified preparations of the tail fragment of platelet myosin also form filaments. These filaments are slightly larger than myosin filaments formed under the same conditions, indicating that the size of the myosin filaments may be influenced by some interaction between the head and tail portions of myosin molecules. Calculations based on the size and shape of the myosin filaments, the dimensions of the myosin molecule and analysis of the bare zone reveal that the synthetic platelet myosin filaments consists of 28 myosin molecules arranged in a bipolar array with the heads of two myosin molecules projecting from the backbone of the filament at 14-15 nm intervals. The heads appear to be loosely attached to the backbone by a flexible portion of the myosin tail. Given the concentration of myosin in platelets and the number of myosin molecules per filament, very few of these thin myosin filaments should be present in a thin section of a platelet, even if all of the myosin molecules are aggregated into filaments.  相似文献   

13.
In striated muscles, shortening comes about by the sliding movement of thick filaments, composed mostly of myosin, relative to thin filaments, composed mostly of actin. This is brought about by cyclic action of 'cross-bridges' composed of the heads of myosin molecules projecting from a thick filament, which attach to an adjacent thin filament, exert force for a limited time and detach, and then repeat this cycle further along the filament. The requisite energy is provided by the hydrolysis of a molecule of adenosine triphosphate to the diphosphate and inorganic phosphate, the steps of this reaction being coupled to mechanical events within the cross-bridge. The nature of these events is discussed. There is good evidence that one of them is a change in the angle of tilt of a 'lever arm' relative to the 'catalytic domain' of the myosin head which binds to the actin filament. It is suggested here that this event is superposed on a slower, temperature-sensitive change in the orientation of the catalytic domain on the actin filament. Many uncertainties remain.  相似文献   

14.
《Biophysical journal》2020,118(5):994-1002
In a contracting muscle, myosin cross-bridges extending from thick filaments pull the interdigitating thin (actin-containing) filaments during cyclical ATP-driven interactions toward the center of the sarcomere, the structural unit of striated muscle. Cross-bridge attachments in the sarcomere have been reported to exhibit a similar stiffness under both positive and negative forces. However, in vitro measurements on filaments with a sparse complement of heads detected a decrease of the cross-bridge stiffness at negative forces attributed to the buckling of the subfragment 2 tail portion. Here, we review some old and new data that confirm that cross-bridge stiffness is nearly linear in the muscle filament lattice. The implications of high myosin stiffness at positive and negative strains are considered in muscle fibers and in nonmuscle intracellular cargo transport.  相似文献   

15.
Rapid freezing followed by freeze-substitution has been used to study the ultrastructure of the myosin filaments of live and demembranated frog sartorius muscle in the states of relaxation and rigor. Electron microscopy of longitudinal sections of relaxed specimens showed greatly improved preservation of thick filament ultrastructure compared with conventional fixation. This was revealed by the appearance of a clear helical arrangement of myosin crossbridges along the filament surface and by a series of layer line reflections in computed Fourier transforms of sections, corresponding to the layer lines indexing on a 43 nm repeat in X-ray diffraction patterns of whole, living muscles. Filtered images of single myosin filaments were similar to those of negatively stained, isolated vertebrate filaments and consistent with a three-start helix. M-line and other non-myosin proteins were also very well preserved. Rigor specimens showed, in the region of overlapping myosin and actin filaments, periodicities corresponding to the 36, 24, 14.4 and 5.9 nm repeats detected in X-ray patterns of whole muscle in rigor; in the H-zone they showed a disordered array of crossbridges. Transverse sections, whose Fourier transforms extend to the (3, 0) reflection, supported the view, based on X-ray diffraction and conventional electron microscopy, that in the overlap zone of relaxed muscle most of the crossbridges are detached from the thin filaments while in rigor they are attached. We conclude that the rapid freezing technique preserves the molecular structure of the myofilaments closer to the in vivo state (as monitored by X-ray diffraction) than does normal fixation.  相似文献   

16.
When the sliding filament hypothesis was proposed in 1953-1954, existing evidence showed that (1) contributions to tension were given by active sites uniformly distributed within each zone of filament overlap and (2) each site functioned cyclically. These sites were identified by electron microscopy as cross-bridges between the two filaments, formed of the heads of myosin molecules projecting from a thick filament and attaching to a thin filament. The angle of these cross-bridges was found to be different at rest and in rigor, suggesting that the event causing relative motion of the filaments was a change of the angle of the cross-bridges. At first, it seemed likely that the whole cross-bridge rotated about its attachment to actin, but when the atomic structures of actin and myosin were obtained by X-ray crystallography, a possible hinge was found between the "catalytic domain" which attaches to the actin filament and the "light-chain domain" which appears to act as a lever arm. Two attitudes of the lever arm are now well established, the transition between them being driven by a conformational change coupled to some step in the hydrolysis of ATP, but several recent observations suggest that this is not the whole story: a third attitude has been shown by X-ray crystallography; a non-muscle myosin has been shown to produce its working stroke in two steps; and there are suggestions that an additional displacement of the filaments is produced by a change in the attitude of the catalytic domain on the thin filament.  相似文献   

17.
We investigated the importance of the myosin head in thick filament formation and myofibrillogenesis by generating transgenic Drosophila lines expressing either an embryonic or an adult isoform of the myosin rod in their indirect flight muscles. The headless myosin molecules retain the regulatory light-chain binding site, the alpha-helical rod and the C-terminal tailpiece. Both isoforms of headless myosin co-assemble with endogenous full-length myosin in wild-type muscle cells. However, rod polypeptides interfere with muscle function and cause a flightless phenotype. Electron microscopy demonstrates that this results from an antimorphic effect upon myofibril assembly. Thick filaments assemble when the myosin rod is expressed in mutant indirect flight muscles where no full-length myosin heavy chain is produced. These filaments show the characteristic hollow cross-section observed in wild type. The headless thick filaments can assemble with thin filaments into hexagonally packed arrays resembling normal myofibrils. However, thick filament length as well as sarcomere length and myofibril shape are abnormal. Therefore, thick filament assembly and many aspects of myofibrillogenesis are independent of the myosin head and these processes are regulated by the myosin rod and tailpiece. However, interaction of the myosin head with other myofibrillar components is necessary for defining filament length and myofibril dimensions.  相似文献   

18.
The length and spatial organization of thin filaments in skeletal muscle sarcomeres are precisely maintained and are essential for efficient muscle contraction. While the major structural components of skeletal muscle sarcomeres have been well characterized, the mechanisms that regulate thin filament length and spatial organization are not well understood. Tropomodulin is a new, 40.6-kD tropomyosin-binding protein from the human erythrocyte membrane skeleton that binds to one end of erythrocyte tropomyosin and blocks head-to-tail association of tropomyosin molecules along actin filaments. Here we show that rat psoas skeletal muscle contains tropomodulin based on immunoreactivity, identical apparent mobility on SDS gels, and ability to bind muscle tropomyosin. Results from immunofluorescence labeling of isolated myofibrils at resting and stretched lengths using anti-erythrocyte tropomodulin antibodies indicate that tropomodulin is localized at or near the free (pointed) ends of the thin filaments; this localization is not dependent on the presence of myosin thick filaments. Immunoblotting of supernatants and pellets obtained after extraction of myosin from myofibrils also indicates that tropomodulin remains associated with the thin filaments. 1.2-1.6 copies of muscle tropomodulin are present per thin filament in myofibrils, supporting the possibility that one or two tropomodulin molecules may be associated with the two terminal tropomyosin molecules at the pointed end of each thin filament. Although a number of proteins are associated with the barbed ends of the thin filaments at the Z disc, tropomodulin is the first protein to be specifically located at or near the pointed ends of the thin filaments. We propose that tropomodulin may cap the tropomyosin polymers at the pointed end of the thin filament and play a role in regulating thin filament length.  相似文献   

19.
Matsuno A  Ishida H  Hori H 《Tissue & cell》1993,25(3):325-332
The ultrastructure of the opaque portion of the adductor muscle in the pecten Chlamys nobilis was investigated. The opaque portion was composed of smooth muscle cells that contained thin and thick filaments. The thick filaments were classified into two kinds, thinner and thicker, according to the statistical analysis of diameters. They were also classified as being shorter and longer, when isolated native filaments were examined. The thick filaments may consequently be classified into two kinds: thinner and shorter filaments, and thicker and longer ones. The thinner and shorter filaments were about 26.5 nm in diameter and 7.5 mum in length, and the thicker and longer ones were about 42.0 nm in diameter and 13.0 mum in length, respectively. A regular periodicity was apparent on the surface of the core after removal of myosin molecules from its surface. The periodicity seemed similar for the two kinds of thick filament.  相似文献   

20.
To bridge the gap between the contractile system in muscle and in vitro motility assay, we have devised an A-band motility assay system. A glycerinated skeletal myofibril was treated with gelsolin to selectively remove the thin filaments and expose a single A-band. A single bead-tailed actin filament trapped by optical tweezers was made to interact with the inside or the outer surface of the A-band, and the displacement of the bead-tailed filament was measured in a physiological ionic condition by phase-contrast and fluorescence microscopy. We observed large back-and-forth displacement of the filament accompanied by a large change in developed force. Despite this large tension fluctuation, we found that the average force was proportional to the overlap inside and outside the A-band up to approximately 150 nm and 300 nm from the end of the A-band, respectively. Consistent with the difference in the density of myosin molecules, the average force per unit length of the overlap inside the A-band (the time-averaged force/myosin head was approximately 1 pN) was approximately twice as large as that outside. Thus, we conclude that the A-band motility assay system described here is suitable for studying force generation on a single actin filament, and its sliding movement within a regular three-dimensional thick filament lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号