首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effect of ammonium chloride, sodium butyrate, sodium propionate, and the heavy metals nickel, zinc, and copper on methanogenesis by pure cultures of Methanospirillum hungatei, Methanosarcina barkeri, Methanobacterium thermoautotrophicum, and Methanobacterium formicicum at pH 6.5 was studied. The latter three strains were resistant to greater than 60 g/L of the volatile fatty acids and to greater than 10 g/L of NH3 N. Methanospirillum hungatei was somewhat more sensitive with 50% inhibition of methanogenesis occurring at 4.2 g/L NH3 N, 27 g/L butyrate, and 41 g/L propionate. All strains were very sensitive to both copper (1-5 mg/L) and zinc (1-10 mg/L), but much more resistant to nickel. Zinc and copper concentrations 30 to 270 times higher were required to cause inhibition of Msp. hungatei incubated in sewage sludge compared with buffer, indicating a strong protective environment was afforded the methanogens against heavy metal toxicity in the sludge.  相似文献   

2.
Abstract Washed whole cells of Methanospirillum hungatei incubated in TES buffer retained methanogenic activity in the absence of any reducing agents. Washed cells grown with 80% H2-20% CO2 and acetate produced methane from H2/CO2 and 50 mM formate at 1.1 to 1.8 and 15 μmol methane · h−1· mg−1 protein, respectively. Cadmium at a concentration of 15 μM and 50 μM mercury, copper or zinc completely inhibited methane production from H2/CO2 by M. hungatei . The chelating agent, EDTA, protected the cells from inhibition by cadmium but acetate and citrate did not. The activity of formate dehydrogenase and hydrogenase remaining in cells after incubation with copper, mercury, zinc or cadmium was reduced with formate dehydrogenase being the more sensitive.  相似文献   

3.
Meristem-tip cultures of apple rootstock 'YP' were started at different times of the year over a period of 2 years and the contamination of the cultures was monitored during five subcultures. Bacterial contaminants were isolated to pure cultures, identified by the API test system and appropriate additional tests, and the sensitivity of the most common isolates to different antibiotics was determined. Of the 216 strains isolated from the initiation cultures, 78% were pseudomonads, coryneforms or enterobacteria. Only three bacterial contaminants were found at the multiplication stage. A greater part of the contaminants were likely to originate from the stock plant. Rifampicin (at 50–200 mg 1-1) and cefotaxime (at 250–1500 mg 1-1) were found to be bactericidal against many isolates, but differences between species and strains were found.  相似文献   

4.
Rose Bengal was cytotoxic to the following bacteria at the concentrations given in parentheses (highest concentrations of dye in mol/1 at which growth occurred on nutrient medium): Brochothrix thermosphacta and Deinococcus radiodurans (1 times 10-6 or less); Streptococcus, Micrococcus, Staphylococcus, Bacillus, Arthrobacter and Kurthia spp. (1 times 10-5–1 x 10-4), and Pseudomonas spp. and Enterobacteriaceae (5 times 10-3–1 x 10-2 or greater). These organisms were killed rapidly when suspended in illuminated (170 μE/m2/s) solutions of Rose Bengal (1 times 10-4 mol/1) providing oxygen was present. Singlet oxygen was identified as the lethal agent, because the rate of killing was increased by dissolving the dye in deuterium oxide while the organisms were protected against photoinactivation by L-histidine or crocetin. Yeasts from chilled foods were killed in illuminated solutions of Rose Bengal but a light intensity of 315 μE/m2/s was needed for a death rate comparable with that of bacteria. The yeasts present in a range of chilled meat and dairy products failed to form colonies on Rose Bengal (5 times 10-5 mol/1) media exposed continuously to modest illumination (55–80 μE/m2/s).  相似文献   

5.
Exposure of brown trout, Salmo trutta , to zinc under continuous flow conditions over 96 h showed that both water hardness and pH exert major influences on the toxicity of the metal. 96-h LC50 values for total zinc ranged from <0.14mg 1−1 in alkaline soft water (pH 8; lOmg 1−1 as CaCO3) to 3.20 mg 1−1 in acidic hard water (pH 5; 204 mg 1−1 as CaCO3). A variable reduction in zinc toxicity in hard water compared with soft water over the pH range 4–9 was attributed to high external calcium. Zinc toxicity was positively correlated with decreasing acidity over the pH range 5–7, the metal being most toxic at pH 8–9 where metal complexes predominate. Below pH 5 metal toxicity also increased, irrespective of hardness. Water hardness and pH interacted with zinc toxicity in a complex manner, apparently dependent on physical and chemical transformations of the metal, and as changes in uptake. detoxification and excretion by the fish.  相似文献   

6.
Yolk-sac fry of brown trout were exposed to three levels of single trace metals (Cu, 20,40,80 nmol 1-1; Pb, 12·5,25,50 nmol 1-1; Zn, 75,150,300 nmol 1-1) typical of concentrations reported for acid soft waters, in flowing, artificial, soft water media maintained at pH 4·5 and [Ca] of 20 or 200 μmol 1-1for 30 days.
Mortalities were high in fry subjected to all levels of the three trace metals at [Ca] 20 μmol 1-1, with 80% of the total deaths occurring between days 11 and 15 of the experiment. 25% mortality occurred at low [Ca] and pH 4·5 in the absence of trace metals, with only one death recorded at [Ca] 200 μmol1-1'(Cu, 80 nmol 1-1). At high [Ca] all three levels of Cu and Pb impaired net Na and K uptake; Cu was the only metal to reduce the uptake of Ca. The Zn treatments had no significant effect on mineral uptake. Calcification of centra was reduced by all three Cu treatments at [Ca] 200 μmol 1-1. The lowest Zn concentration (75 nmol 1-1) was the only other treatment to impair skeletal development. In the absence of trace metals, low [Ca] significantly reduced Ca, Na and K uptake, skeletal calcification and dry mass at pH 4·5.
The deleterious effects of low Cu, Pb and Zn concentrations at low pH and low [Ca], and the ameliorative effect of higher ambient [Ca], are discussed in relation to fishery status in soft, acid waters.  相似文献   

7.
The acute toxicity of copper, zinc and manganese and copper-zinc and copper-manganese mixtures were determined for juvenile longfin dace, Agosia chrysogaster in hard water bioassays (mean=218 mg 1−1 CaCO3). Copper-zinc was the most lethal toxicant (96-h L.c.50= 0.21 mg 1−1 copper and 0.28 mg 1−1 zinc) and exhibited a more than additive toxicity which was in contrast to the additive toxicity of copper-manganese mixtures (96-h L.c.50= 0.45 mg 1−1 copper and 64.0 mg 1−1 manganese). The toxicity of copper (96-h L.c.50= 0.86 mg 1−1) and zinc (96-h L.c.50= 0.79 mg 1−1) to the fish was similar but both were considerably more lethal than manganese (96-h L.c.50= 130 mg 1−1).  相似文献   

8.
The distribution of Peridinium willei and P. volzii was studied in Danish lakes. Both species were confined to lakes with concentrations of Total P < 0.15 mg 1-1, with the majority of occurrences at Total P concentration between 0.020–0.040 mg 1-1 and concentrations of PO4 P between detection limit and 0.040 mg 1-1. The occurrence of the species in relation to inorganic N compounds (NH4 N and NO2+ NO3 N) was significantly broader for P. willei than for P. volzii: P. willei had an almost even distribution within a wide range of NH4 N, whereas P. volzii mainly occurred between 0.001 and 0.10 NH4 N 1-1. P. willei had an almost even distribution at values beween 0.005 and 0.42 mg NO2+ NO3 N 1-1, whereas P. volzii mainly occurred below 0.050 mg NO2+ NO3 N 11. P. willei was found at pH values between 4.2 and 8.5, whereas P. volzii was confined to lakes with a slightly basic pH. The study confirmed the broad limits of P. willei and the much more narrow limits of P. volzii in relation to seasonal occurrence and pH, as well as an affinity of the former to ponds and lakes with a rich bottom vegetation. The study also showed, however, that the species were not as widespread and common in recent Danish lake phytoplankton as generally stated by previous authors. The use of different ecological factors to give weight to species separation is discussed. The inclusion of P. volzii in P. willei proposed by Popovsky & Phiester is not supported by the present study, as the two taxa appear to have different ecological tolerances.  相似文献   

9.
Seeds of Salicornia europaea L. were analyzed for their nutrient reserves. The content of potassium and sodium was 216 and 39 mmol (kg dry seeds)-1, respectively. Calcium and magnesium accounted for 30 and 138 mmol (kg dry seeds)-1, respectively. Whereas most of the alkali metals were water soluble, the alkaline earth metals were mostly acid soluble. The acid-soluble calcium plus magnesium corresponded well with the acid-soluble phosphate. Chloride was accumulated to a level equivalent to that of sodium. Carbonate was present at a concentration of 9 mmol (kg dry seeds)-1. Carbohydrates accounted for 93 g (kg dry seeds)-1, nearly half of which was derived from sucrose. Fructose and glucose were present only in traces. Total nitrogen was determined to be 55 g (kg dry seeds)-1, 16% of which was diethylether soluble. The remaining nitrogen was separated into 39 g (kg dry seeds)-1 ethanol-insoluble and 8 g (kg dry seeds)-1 ethanol-soluble nitrogen. About 10% of the ethanol-soluble nitrogen were derived from amino acids. Total lipid content was about 280 g (kg dry seeds)-1. The alcoholic component of the storage lipids was glycerol and the glycerides were calculated from gas chromatography to be 66% of the total lipids. About 90% of the fatty acids consisted of unsaturated acids, linoleic and oleic acid, the majority (77%) of which was linoleic acid.  相似文献   

10.
Abstract. The distal inner medullary collecting duct (IMCD) is critical in the urinary concentrating process, in part because it is the site of vasopressin (AVP)-regulated permeability to urea. The purpose of these experiments was to develop a cell culture model of the IMCD on permeable structure and to characterize the responsiveness to AVP. Rat IMCD cells were grown to confluence on collagen-coated Millipore filters glued onto plastic rings. To assess the time required to achieve confluence, the transepithelial resistance was measured periodically and was found to be stable after 2 weeks, at a maximal value of 595 ± 22 ω cm2. In separate monolayers the effect of AVP on inulin and urea permeability was determined. While inulin permeability was unchanged after AVP, urea permeability increased from 6.0 ± 0–4 to peak values of 16.0 ± 3–8(10nM),23.1 ± 3–9(1 μM)and28 1 ± 4–9(10μM) X 10-6cms-1 ( n = 24). In 10 other monolayers, after the addition of 1 mM 8-Br-cAMP, urea permeability increased from 5.1 ±0–3 to 8.1 ± 1–6 times 10-6 cm s-1 and, after 8-Br-cAMP +3-isobutyl-l-methylxanthine, to 12.2 ± 0–7 times 10-6 cms-1. We conclude that rat IMCD cells grown in culture exhibit the characteristics of a 'tight' epithelium. Inulin and urea permeability are not different in the absence of AVP, consistent with high resistance junctional complexes. Furthermore, IMCD cells retain the capacity for AVP-regulated urea permeability, a characteristic feature of this nephron segment in vivo.  相似文献   

11.
As part of a programme of acquiring data for preparing standards to safeguard European, nonsalmonid, freshwater fish from pollution, toxicity tests were carried out in hard, well-aerated water. Asymptotic median lethal concentrations (LC50s) of undissociated ammonia, cyanide, nitrite and phenol to one or more of three species were determined. The LC50s were as follows: to common carp 16mg1-1 as NO2–N; to perch 0.1 mg1-1 as HCN; to roach 0.35 mg1-1 as NH3-N, 0-11mg1-1 as HCN, 10.1 mg1-1 asNO2-Nand 10mg-1 as phenol. In order to define these LC50s, exposure periods within the range 0.3 days (phenol) to 14 days (nitrite) were required. Comparisons are made with other data and the tentative water quality 'criteria' proposed by the European Inland Fisheries Advisory Commission.  相似文献   

12.
Abstract: An automated bench-scale countercurrent biosorption system (CBS) has been designed for the removal of metals from aqueous effluents. The system has been tested with activated sludge microorganisms as a biosorbent and lead and copper as model metals. Nearly 5 1 of a lead nitrate solution at 100 mg l−1 of lead have been treated down to a final concentration of 0.1 mg l−1 (99.9% removal) by using 4.8 g of dry biosorbent. Under similar conditions, copper chloride solutions at 100 mg 1−1 of copper were treated down to a final concentration of 35–45 mg l−l representing 60% removal. The advantage of the CBS is to maximize metal concentration in the biosorbent, from which the metal may thereby be recovered if desired. In addition, the CBS minimizes metal concentration in the treated effluent, which is the first objective of the treatment.  相似文献   

13.
Leaf mesophyll cells were isolated from developing first trifoliate leaves of Glycine max (L.) Merr cv. Fiskeby V using a mechanical isolation procedure combined with low speed centrifugation. Cell yields of 17 ± 1.7% were routinely obtained with 55–75% intactness, as assessed by staining techniques, fluorescence transients and the ability of cells to convert to protoplasts after enzyme treatment. Rates of leaf photosynthesis were maximal in 27-day-old plants [280 μmol O2 evolved (mg chlorophyll)-1h-1], from which isolated cells and protoplasts gave rates of up to 140 μmol O2 evolved (mg chlorophyll)-1 h-1. Results are discussed in relation to leaf development and cell status during the attainment of photosynthetic competence.  相似文献   

14.
Effects of mixtures of chloride salts of cadmium, copper and zinc on survival, whole body residues, and histopathology of mummichog, Fundulus heteroclitus (L.), were investigated in synthetic sea water at 20‰ salinity and 20°C. Mixtures of Cu2+ and Zn2+ as indicated by 96 h bioassay studies produced more deaths than expected on the basis of toxicities of individual components. Concentrations of Cd2+ not ordinarily lethal exerted a negative effect on survival of fish intoxicated by salts of copper, zinc, or both.
Atomic absorption determinations of Cd, Cu, and Zn residues in mummichog which survived 96 h exposures to each of these toxicants provided useful indices of total body burdens for these metals. Residues from survivors held in mixtures, especially Cd2+ and Zn2+ mixtures, did not conform to patterns observed for single elements. Whole body aggregates of Cd, Cu, and Zn from dead mummichogs were of limited worth owing to possible accumulation of these metals from the medium after death.
Renal and lateral line canal lesions were noted in all fish subjected to copper concentrations of 1 mg/1 and higher. Renal lesions observed in fish immersed in mixtures of Cu2+ and Cd2+ assumed a damage pattern characteristic of Cd2+; with mixtures of Cu2+ and Zn2+, lesion were typical of Cu2+-induced damage. Lesions induced in lateral line epithelium by Cu2+ were not affected by either Cd2+ or Zn2+. Epithelia lining the oral cavity were necrotized by the caustic action of high levels of Zn2+ (60 mg/1) and of Cu2+ (8 mg/1).  相似文献   

15.
SUMMARY. 1. Effects of copper on species composition and production of benthic insects in an oligotrophic stream dosed at low concentrations (2.5-15 μg 1-1 Cur; approximately 12-75 ng 1-1 Cu2+) were determined. Dosing was initially in autumn-early winter when peak densities of many species occur. It was resumed the following summer near the time of egg hatch of most species and continued through the remaining aquatic stages of univoltine and multivoltine taxa.  相似文献   

16.
A highly proteolytic bacterium isolated from abattoir effluent was identified as a non-pigmented strain of Chromobacterium lividum. Ferrous or ferric ions at concentrations between 1·8 × 10-5 and 9 × 10-4 g ions/1, which is 2–3 orders of magnitude greater than that required for growth, were essential for extracellular proteinase production in aerated but not in static culture. Co2+, Ni2+, Mn2+, Cu2+ or Zn2+ ions could not replace iron. Four proteinases (I-IV) were produced in static culture, but only proteinase I was formed in significant quantities in aerated culture. With both forms of culture amino nitrogen was essential for proteinase production; glucose inhibited formation in aerated, but not static, cultures. Growth occurred over the range 1–33 °C, whereas proteinase production ceased at 27 °C, with maximum activity at 13 °C. Proteinase production appeared to be controlled by an interaction between iron, oxygen tension and glucose.  相似文献   

17.
Five nitrogen-fixing Azotobacter strains isolated from agricultural farms in West Bengal, India, were resistant to mercuric ion and organomercurials. Resistance of Hg-resistant bacteria to mercury compounds is mediated by the activities of mercuric reductase and organomercurial lyase in the presence of NADPH and GSH as cofactors. These bacteria showed an extended lag phase in the presence of 10–50 μmol 1-1 HgCl2. Nitrogen-fixing ability of these isolates was slightly inhibited when the mercuryresistant bacterial cells were preincubated with 10 μmol 1-1 HgCl2. Acetylene reduction by these bacteria was significantly inhibited (91-97%) by 50 μmol 1-1 HgCl2. However, when GSH and NADPH were added to the acetylene reduction assay mixture containing 50 μmol 1-1 HgCl2, only 42–50% inhibition of nitrogenase activity was observed. NADPH and GSH might have a role in suppressing the inhibition of N2-fixation in the presence of Hg compounds either by assisting Hg-detoxifying enzymes to lower Hg concentration in the assay mixture or by formation of adduct comprising Hg and GSH which is unable to inhibit nitrogen fixation.  相似文献   

18.
Abstract Ethylene (ethene) was found to inhibit methane formation in slurries from sewage sludge and sediment samples taken from freshwater and marine sources. Methane formation from sediment contents was inhibited by 50% at 0.07% ethylene concentration in the gas phase (approx. 5 μmol · 1−1 in the aqueous phase) and by 94% at ≥0.05% ethylene in the gas phase (≥36 μ mol · 1−1 in the aqueous phase). Sulphate reduction was not impaired. Methane formation from added acetate, hydrogen or methanol was inhibited by ≥98%, from lactate by about 90%. The inhibition was reversible, and methanogenic activity recuperated completely after ethylene removal. Cyclopentadiene and cycloheptatriene led to strong inhibition; benzene, toluene, isoprene, and 1-hexine to moderate inhibition of methanogenesis; several unsaturated linear hydrocarbons were without effect. Pure cultures of Methanospirillum hungatei, Methanothrix soehngenii , and Methanosarcina barkeri were all inhibited by 50% at 0.05–0.1% ethylene concentration in the gas phase (3.6–7.2 μmol · 1−1 in the aqueous phase). Pure cultures of Acetobacterium woodii, Halobacterium halobium and Sulfolobus acidocaldarius were not significantly inhibited by either ethylene or acetylene. Ethylene is recommended as a selective inhibitor of methanogenesis for physiological and enrichment experiments with sediment and sludge samples.  相似文献   

19.
The heat-resistant mold, Talaromyces flavus , was found to produce a thermophilic glucoamylase that exhibited the highest activity at 50°C and in the pH range of 4.0–4.8. The K m and V max values of the crude enzyme for amylopectin were 0.21% and 16.7 mg glucose 1-1, min-1, respectively. The molecular weight of the enzyme as estimated by the gel filtration method was 42 kDa.  相似文献   

20.
The effects of physical and chemical factors on the production of H2O2 from Escherichia coli cells were studied. When 20 mmol 1-1 Tris-HCl buffer was used for this purpose the electron transport system (ETS) showed the highest activity at pH 7.6-8.2. KCN promoted the production of H2O2 from E. coli cells, and the optimum concentration was changed in different reaction times and pH values. Glucose, 5 mg ml-1, increased the ETS activity about twofold. The other substrates and surfactants did not increase the chemiluminescence intensity. NaNO2 and Na2SO4 in inorganic salts significantly reduced the ETS activity above 70%. In addition, the optimum temperature for the production of H2O2 was 30°C in this study. When glucose (5 mg ml-1) and KCN (0.2 mmol 1-1) were added to the reaction buffer containing 0.5 mmol 1-1 menadione, the detectable minimum cell densities (averages of triplicate assay) of E. coli, Enterobacter cloacae and Serratia marcescens were 5 times 103 cells ml-1, 104 cells ml-1 and 104 cells ml-1 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号