首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this article is to report final results of the evaluation of a chi-square ratio test proposed by the US Food and Drug Administration (FDA) for demonstrating equivalence of aerodynamic particle size distribution (APSD) profiles of nasal and orally inhaled drug products. A working group of the Product Quality Research Institute previously published results demonstrating some limitations of the proposed test. In an effort to overcome the test's limited discrimination, the group proposed a supplemental test, a population bioequivalence (PBE) test for impactor-sized mass (ISM). In this final report the group compares the chi-square ratio test to the ISM-PBE test and to the combination of both tests. The basis for comparison is a set of 55 realistic scenarios of cascade impactor data, which were evaluated for equivalence by the statistical tests and independently by the group members. In many instances, the combined application of these 2 tests appeared to increase the discriminating ability of the statistical procedure compared with the chi-square ratio test alone. In certain situations the chi-square ratio test alone was sufficient to determine equivalence of APSD profiles, while in other situations neither of the tests alone nor their combination was adequate. This report describes all of these scenarios and results. In the end, the group did not recommend a statistical test for APSD profile equivalence. The group did not investigate other in vitro tests, in vivo issues, or other statistical tests for APSD profile comparisons. The studied tests are not intended for routine quality control of APSD.  相似文献   

2.
The purpose of this article is to present the thought process, methods, and interim results of a PQRI Working Group, which was charged with evaluating the chi-square ratio test as a potential method for determining in vitro equivalence of aerodynamic particle size distribution (APSD) profiles obtained from cascade impactor measurements. Because this test was designed with the intention of being used as a tool in regulatory review of drug applications, the capability of the test to detect differences in APSD profiles correctly and consistently was evaluated in a systematic way across a designed space of possible profiles. To establish a “base line,” properties of the test in the simplest case of pairs of identical profiles were studied. Next, the test's performance was studied with pairs of profiles, where some difference was simulated in a systematic way on a single deposition site using realistic product profiles. The results obtained in these studies, which are presented in detail here, suggest that the chi-square ratio test in itself is not sufficient to determine equivalence of particle size distributions. This article, therefore, introduces the proposal to combine the chi-square ratio test with a test for impactor-sized mass based on Population Bioequivalence and describes methods for evaluating discrimination capabilities of the combined test. The approaches and results described in this article elucidate some of the capabilities and limitations of the original chi-square ratio test and provide rationale for development of additional tests capable of comparing APSD profiles of pharmaceutical aerosols. Published: January 19, 2007  相似文献   

3.
The purpose of this article is 2-fold: (1) to document in the public domain the considerations that led to the development of a regulatory statistical test for comparison of aerodynamic particle size distribution (APSD) of aerosolized drug formulations, which was proposed in a US Food and Drug Administration (FDA) draft guidance for industry; and (2) to explain the background and process for evaluation of that test through a working group involving scientists from the FDA, industry, academia, and the US Pharmacopeia, under the umbrella of the Product Quality Research Institute (PQRI). The article and the referenced additional statistical information posted on the PQRI Web site explain the reasoning and methods used in the development of the APSD test, which is one of the key tests required for demonstrating in vitro equivalence of orally inhaled and nasal aerosol drug products. The article also describes the process by which stakeholders with different perspectives have worked collaboratively to evaluate properties of the test by drawing on statistical models, historical and practical information, and scientific reasoning. Overall, this article provides background information to accompany the companion article's discussion of the study's methods and results. Published: January 19, 2007 Former address: Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration Rockville, MD  相似文献   

4.
Wide variation in respiratory flow rates between patients emphasizes the importance of evaluating the aerodynamic particle size distribution (APSD) of dry powder inhaler (DPI) using a multi-stage impactor at different flow rates. US Pharmacopeia recently listed modified configurations of the Andersen cascade impactor (ACI) and new sets of cut-off diameter specifications for the operation at flow rates of 60 and 90 L/min. The purpose of this study was to clarify the effect of these changes on the APSD of DPI products at varied flow rates. We obtained APSD profiles of four DPIs and device combinations, Relenza®-Diskhaler® (GlaxoSmithKline Co.), Seebri®-Breezhaler® (Novartis Pharma Co.), Pulmicort®-Turbuhaler® (Astrazeneca Co.), and Spiriva®-Handihaler® (Nippon Boehringer Ingelheim Co.) using Next Generation Impactors (NGIs) and ACIs at flow rates from 28.3 to 90 L/min to evaluate the difference in the use of previous and new sets of cut-off diameter specifications. Processing the data using the new specifications for ACI apparently reduced large differences in APSD obtained by NGI and ACI with the previous specifications at low and high flow rates in all the DPIs. Selecting the appropriate configuration of ACI corresponding to the flow rate provided comparable APSD profiles of Pulmicort®-Turbuhaler® to those using NGIs at varied flow rates. The results confirmed the relevance of the current US Pharmacopeia specifications for ACI analysis in obtaining APSD profiles of DPI products at wide flow rates.  相似文献   

5.
Pressurized metered dose inhalers (pMDIs) are frequently used for the treatment of asthma and chronic obstructive pulmonary disease. The aerodynamic particle size distribution (APSD) of the residual particles delivered from a pMDI plays a key role in determining the amount and region of drug deposition in the lung and thereby the efficacy of the inhaler. In this study, a simulation model that predicts the APSD of residual particles from suspension pMDIs was utilized to identify the primary determinants for APSD. These findings were then applied to better understand the effect of changing drug concentration and micronized drug size on experimentally observed APSDs determined through Andersen Cascade Impactor testing. The experimental formulations evaluated had micronized drug mass median aerodynamic diameters (MMAD) between 1.2 and 2.6 μm and drug concentrations ranging from 0.01 to 1% (w/w) with 8.5% (w/w) ethanol in 1,1,1,2-tetrafluoroethane (HFA-134a). It was determined that the drug concentration, micronized drug size, and initially atomized droplet distribution have a significant impact in modulating the proportion of atomized droplets that contain multiple suspended drug particles, which in turn increases the residual APSD. These factors were found to be predictive of the residual particle MMAD for experimental suspension HFA-134a formulations containing ethanol. The empirical algebraic model allows predicting the residual particle size for a variety of suspension formulations with an average error of 0.096 μm (standard deviation of 0.1 μm).KEY WORDS: aerodynamic particle size distribution (APSD), formulation, pressurized metered dose inhaler (pMDI), suspension  相似文献   

6.
The purpose of this review is to discuss the roles of cascade impactor (CI) data in inhaler assessment and to examine the relationship between aerodynamic particle size distribution (APSD) and the clinical response to inhaled drugs. A systematic literature search of studies linking APSD to clinical response was undertaken. Two distinct roles for CI-generated data were identified: (1) the control of inhaler/drug product quality; and (2) the provision of data that may be predictive of particle deposition in the respiratory tract. Method robustness is required for the former application, combined with simplicity in operation, resulting in rudimentary attempts to mimic the anatomy of the respiratory tract. The latter necessitates making the apparatus and its operation more closely resemble patient use of the inhaler. A CI cannot perfectly simulate the respiratory tract, since it operates at constant flow rate, while the respiratory cycle has a varying flow-time profile. On the basis of a review of studies linking APSD to clinical response of inhaled drugs, it is concluded that attempts to use CI-generated data from quality control testing to compare products for bioequivalence are likely to have only limited success, as links between laboratory-measured APSD, particle deposition in the respiratory tract, and clinical response are not straightforward.  相似文献   

7.
Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disease with few reliable diagnostic measures. Therefore, it is great important to explore novel tools for the diagnosis of MG. In this study, a serum metabolomic approach based on LC?CMS in combination with multivariate statistical analyses was used to identify and classify patients with various grades of MG. Serum samples from 42 MG patients and 16 healthy volunteers were analyzed by liquid chromatography Fourier transform mass spectrometry (LC-FTMS). MG patients were clearly distinguished from healthy subjects based on their global serum metabolic profiles by using orthogonal partial least squares (OPLS) analysis. Moreover, different changes in metabolic profiles were observed between early- and late-stages MG patients. Nine biomarkers, including gamma-aminobutyric acid and sphingosine 1-phosphate were identified. In addition, 92.8% sensitivity, 83.3% specificity and 90% accuracy were obtained from the OPLS discriminant analysis (OPLS-DA) class prediction model in detecting MG. The results presented here illustrate that serum metabolomics exhibits great potential in the detecting and grading of MG, and it is potentially applicable as a new diagnostic approach for MG.  相似文献   

8.
This study of aerodynamic mass-weighted particle size distribution (APSD) data from orally inhaled products (OIPs) investigated whether a set of simpler (than currently used) metrics may be adequate to detect changes in APSD for quality control (QC) purposes. A range of OIPs was examined, and correlations between mass median aerodynamic diameter and the ratio of large particle mass (LPM) to small particle mass (SPM) were calculated. For an Andersen cascade impactor, the LPM combines the mass associated with particle sizes from impactor stage 1 to a product-specific boundary size; SPM combines the mass of particles from that boundary through to terminal filter. The LPM–SPM boundary should be chosen during development based on the full-resolution impactor results so as to maximize the sensitivity of the LPM/SPM ratio to meaningful changes in quality. The LPM/SPM ratio along with the impactor-sized mass (ISM) are by themselves sufficient to detect changes in central tendency and area under the APSD curve, which are key in vitro quality attributes for OIPs. Compared to stage groupings, this two-metric approach provides better intrinsic precision, in part due to having adequate mass and consequently better ability to detect changes in APSD and ISM, suggesting that this approach should be a preferred QC tool. Another advantage is the possibility to obtain these metrics from the abbreviated impactor measurements (AIM) rather than from full-resolution multistage impactors. Although the boundary is product specific, the testing could be accomplished with a basic AIM system which can meet the needs of most or all OIPs.  相似文献   

9.
Chen Y 《PloS one》2011,6(9):e24791
Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.  相似文献   

10.
The specific mechanism of pulmonary arterial hypertension (PAH) remains elusive. The present study aimed to explore the underlying mechanism of PAH through the identity of novel biomarkers for PAH using metabolomics approach. Serum samples from 40 patients with idiopathic PAH (IPAH), 20 patients with congenital heart disease‐associated PAH (CHD‐PAH) and 20 healthy controls were collected and analysed by ultra‐high‐performance liquid chromatography coupled with high‐resolution mass spectrometry (UPLC‐HRMS). Orthogonal partial least square‐discriminate analysis (OPLS‐DA) was applied to screen potential biomarkers. These results were validated in monocrotaline (MCT)‐induced PAH rat model. The OPLS‐DA model was successful in screening distinct metabolite signatures which distinguished IPAH and CHD‐PAH patients from healthy controls, respectively (26 and 15 metabolites). Unbiased analysis from OPLS‐DA identified 31 metabolites from PAH patients which were differentially regulated compared to the healthy controls. Our analysis showed dysregulation of the different metabolic pathways, including lipid metabolism, glucose metabolism, amino acid metabolism and phospholipid metabolism pathways in PAH patients compared to their healthy counterpart. Among these metabolites from dysregulated metabolic pathways, a panel of metabolites from lipid metabolism and fatty acid oxidation (lysophosphatidylcholine, phosphatidylcholine, perillic acid, palmitoleic acid, N‐acetylcholine‐d ‐sphingomyelin, oleic acid, palmitic acid and 2‐Octenoylcarnitine metabolites) were found to have a close association with PAH. The results from the analysis of both real‐time quantitative PCR and Western blot showed that expression of LDHA, CD36, FASN, PDK1 GLUT1 and CPT‐1 in right heart/lung were significantly up‐regulated in MCT group than the control group.  相似文献   

11.
A set of 13 aliphatic alcohols was modelled by molecular dynamics simulations at temperatures from 288 to 338 K using the optimised potential for liquid simulations (OPLS) united-atom force field, the OPLS all-atom force field and the OPLS all-atom force field with modified partial charges of the hydroxyl group. The set includes primary and secondary alcohols, and mono-, di- and trialcohols, and covers a broad range of polarities from log P = ? 0.74 (methanol) to log P = 2.9 (octanol). The density, the radial distribution function, the self-diffusion coefficient and the dielectric constant were evaluated. A long equilibration time of at least 50 ns and a large size of the molecular system of more than 75,000 atoms were used. Except for glycerol, the OPLS all-atom force field reliably reproduced the experimentally determined density with deviations of less than 4% over the whole temperature range. In contrast, the modelled self-diffusion coefficient deviated from its experimental value by up to 55%. To modify the force field, the partial charges of the hydroxyl group were varied by up to 3%. Using the modified OPLS force field, the deviation of the self-diffusion coefficients from their experimental values decreased to less than 19%, while the densities changed by less than 1%.  相似文献   

12.
Over the lifecycle of an orally inhaled product (OIP), multi-stage cascade impactor (CI) measurements are used for different purposes and to address different questions. Full-resolution CIs can provide important information during product development and are widely used but are time- and resource-intensive, highly variable, and suboptimal for OIP quality control (QC) testing. By contrast, Efficient Data Analysis (EDA) combined with Abbreviated Impactor Measurement (AIM) systems pertinent either for QC and-possibly-for adult Human Respiratory Tract (pHRT) has been introduced for OIP performance assessment during and post-development. This article summarizes available evidence and discusses a strategy for using either abbreviated or full-resolution CI systems depending on the purpose of the measurement, such that adequate, accurate, and efficient testing of aerodynamic particle size distribution (APSD) of OIPs can be achieved throughout the lifecycle of a product. Under these proposals, a comprehensive testing program should initially be conducted by full-resolution CI in OIP development to ascertain the product's APSD. Subsequently, correlations should be established from the selected AIM CIs to the corresponding full-resolution system, ideally developing specifications common to both techniques. In the commercial phase, it should be possible to release product using AIM/EDA, keeping the full-resolution CI for investigations, change control, and trouble-shooting, thus optimizing resources for APSD characterization throughout the product lifecycle. If an in vitro-in vivo relationship is established and clinically relevant sizes are known, an AIM-pHRT could serve as a quick indicator that clinically relevant fractions have not changed and also, in the management of post-approval changes.  相似文献   

13.
Cascade impactors, operating on the principle of inertial size separation in (ideally) laminar flow, are used to determine aerodynamic particle size distributions (APSDs) of orally inhaled product (OIP) aerosols because aerodynamic diameter can be related to respiratory tract deposition. Each stage is assumed typically to be an ideal size fractionator. Thus, all particles larger than a certain size are considered collected and all finer particles are treated as penetrating to the next stage (a step function stage efficiency curve). In reality, the collection efficiency of a stage smoothly increases with particle size as an “S-shaped” curve, from approximately 0% to 100%. Consequently, in some cases substantial overlap occurs between neighboring stages. The potential for bias associated with the step-function assumption has been explored, taking full resolution and two-stage abbreviated forms of the Andersen eight-stage nonviable impactor (ACI) and the next-generation pharmaceutical impactor (NGI) as example apparatuses. The behavior of unimodal, log-normal APSDs typical of OIP-generated aerosols has been investigated, comparing known input values to calculated values of central tendency (mass median aerodynamic diameter) and spread (geometric standard deviation, GSD). These calculations show that the error introduced by the step change assumption is larger for the ACI than for the NGI. However, the error is sufficiently small to be inconsequential unless the APSD in nearly monodisperse (GSD ≤1.2), a condition that is unlikely to occur with realistic OIPs. Account may need to be taken of this source of bias only for the most accurate work with abbreviated ACI systems.  相似文献   

14.
According to the energetic equivalence rule, energy use by a population is independent of average adult body mass. Energy use can be equated with carbon flux, and it has been suggested that population fluxes of other materials, such as nitrogen and phosphorus, might also be independent of body mass. We compiled data on individual nitrogen deposition rates (via faeces and urine) and average population densities of 26 species of mammalian herbivores to test the hypothesis of elemental equivalence for nitrogen. We found that the mass scaling of individual nitrogen flux was opposite to that of population density for the species in our dataset. By computing the product of individual nitrogen flux and average population density for each species in our dataset, we found that population-level nitrogen flux was independent of species mass, averaging c. 3.22 g N ha−1 day−1. Results from this analysis can be used to understand the influence of mammalian herbivore communities on nitrogen cycling in terrestrial ecosystems.  相似文献   

15.
In data analysis involving the proportional-hazards regression model due to Cox (1972, Journal of the Royal Statistical Society, Series B 34, 187-220), the test criteria commonly used for assessing the partial contribution to survival of subsets of concomitant variables are the classical likelihood ratio (LR) and Wald statistics. This paper presents an investigation of three other test criteria with potentially major computational advantages over the classical tests, especially for stepwise variable selection in moderate to large data sets. The alternative criteria considered are Rao's efficient score statistic and two other score statistics. Under the Cox model, the performance of these tests is examined empirically and compared with the performance of the LR and Wald statistics. Rao's test performs comparably to the LR test in all the cases considered. The performance of the other criteria is competitive in many cases. The use of these statistics is illustrated in a study of coronary artery disease.  相似文献   

16.
(1)H NMR (nuclear magnetic resonance spectroscopy) has been used for metabolomic analysis of 'Riesling' and 'Mueller-Thurgau' white wines from the German Palatinate region. Diverse two-dimensional NMR techniques have been applied for the identification of metabolites, including phenolics. It is shown that sensory analysis correlates with NMR-based metabolic profiles of wine. (1)H NMR data in combination with multivariate data analysis methods, like principal component analysis (PCA), partial least squares projections to latent structures (PLS), and bidirectional orthogonal projections to latent structures (O2PLS) analysis, were employed in an attempt to identify the metabolites responsible for the taste of wine, using a non-targeted approach. The high quality wines were characterized by elevated levels of compounds like proline, 2,3-butanediol, malate, quercetin, and catechin. Characterization of wine based on type and vintage was also done using orthogonal projections to latent structures (OPLS) analysis. 'Riesling' wines were characterized by higher levels of catechin, caftarate, valine, proline, malate, and citrate whereas compounds like quercetin, resveratrol, gallate, leucine, threonine, succinate, and lactate, were found discriminating for 'Mueller-Thurgau'. The wines from 2006 vintage were dominated by leucine, phenylalanine, citrate, malate, and phenolics, while valine, proline, alanine, and succinate were predominantly present in the 2007 vintage. Based on these results, it can be postulated the NMR-based metabolomics offers an easy and comprehensive analysis of wine and in combination with multivariate data analyses can be used to investigate the source of the wines and to predict certain sensory aspects of wine.  相似文献   

17.
The multi-stage cascade impactor (CI) is widely used to determine aerodynamic particle size distributions (APSDs) of orally inhaled products. Its size-fractionating capability depends primarily on the size of nozzles of each stage. Good Cascade Impactor Practice (GCIP) requires that these critical dimensions are linked to the accuracy of the APSD measurement based on the aerodynamic diameter size scale. Effective diameter (D eff) is the critical dimension describing any nozzle array, as it is directly related to stage cut-point size (d 50). d 50 can in turn be determined by calibration using particles of known aerodynamic diameter, providing traceability to the international length standard. Movements in D eff within manufacturer tolerances for compendial CIs result in the worst case in shifts in d 50 of <±10%. Stage mensuration therefore provides satisfactory control of measurement accuracy. The accurate relationship of D eff to d 50 requires the CI system to be leak-free, which can be checked by sealing the apparatus at the entry to the induction port and isolating it from the vacuum source and measuring the rate of pressure rise before each use. Mensuration takes place on an infrequent basis compared with the typical interval between individual APSD determinations. Measurement of stage flow resistance (pressure drop; ΔP stage) could enable the user to know that the CI stages are fit for use before every APSD measurement, by yielding an accurate measure of D eff. However, more data are needed to assess the effects of wear and blockage before this approach can be advocated as part of GCIP.  相似文献   

18.
Long-term vaccinations with human beta-amyloid peptide 1-42 (Abeta1-42) have recently been shown to prevent or markedly reduce Abeta deposition in the PDAPP transgenic model of Alzheimer's disease (AD). Using a similar protocol to vaccinate 7.5-month-old APP (Tg2576) and APP+PS1 transgenic mice over an 8-month period, we previously reported modest reductions in brain Abeta deposition at 16 months. In these same mice, Abeta vaccinations had no deleterious behavioral effects and, in fact, benefited the mice by providing partial protection from age-related deficits in spatial working memory in the radial arm water maze task (RAWM) at 15.5 months. By contrast, control-vaccinated transgenic mice exhibited impaired performance throughout the entire RAWM test period at 15.5 months. The present study expands on our initial report by presenting additional behavioral results following long-term Abeta vaccination, as well as correlational analyses between cognitive performance and Abeta deposition in vaccinated animals. We report that 8 months of Abeta vaccinations did not reverse an early-onset balance beam impairment in transgenic mice. Additionally, in Y-maze testing at 16 months, all mice showed comparable spontaneous alternation irrespective of genotype or vaccination status. Strong correlations were nonetheless present between RAWM performance and extent of "compact" Abeta deposition in both the hippocampus and the frontal cortex of vaccinated APP+PS1 mice. Our results suggest that the behavioral protection of long-term Abeta vaccinations is task specific, with preservation of hippocampal-associated working memory tasks most likely to occur. In view of the early short-term memory deficits exhibited by AD patients, Abeta vaccination of presymptomatic AD patients could be an effective therapeutic to protect against such cognitive impairments.  相似文献   

19.
20.
A widely used herbal medicine, Ixeris sonchifolia (Bge.) Hance Injectable (ISHI) was investigated for quality consistency. Characteristic fingerprints of 23 batches of the ISHI samples were generated at five wavelengths and evaluated by the systematic quantitative fingerprint method (SQFM) as well as simultaneous analysis of the content of seven marker compounds. Chemometric methods, i.e., support vector machine (SVM) and principal component analysis (PCA) were performed to assist in fingerprint evaluation of the ISHI samples. Qualitative classification of the ISHI samples by SVM was consistent with PCA, and in agreement with the quantitative evaluation by SQFM. In addition, the antioxidant activities of the ISHI samples were determined by both the off-line and on-line DPPH (2, 2-diphenyl-1-picryldrazyl) radical scavenging assays. A fingerprint–efficacy relationship linking the chemical components and in vitro antioxidant activity was established and validated using the partial least squares (PLS) and orthogonal projection to latent structures (OPLS) models; and the online DPPH assay further revealed those components that had position contribution to the total antioxidant activity. Therefore, the combined use of the chemometric methods, quantitative fingerprint evaluation by SQFM, and multiple marker compound analysis in conjunction with the assay of antioxidant activity provides a powerful and holistic approach to evaluate quality consistency of herbal medicines and their preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号